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Joint work with Lara Bossinger, Juan Bosco Fŕıas Medina, and Alfredo Nájera Chávez
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Reminders on cluster varieties

Recall

T = (C∗)n comes with canonical volume form Ω = dz1
z1
∧ · · · ∧ dzn

zn

Moral definition

A cluster variety is a scheme built out of algebraic tori, birationally glued so
that the volume forms on tori patch together giving a global volume form.

Why only moral?

Birational gluing maps far more specific than this.

Two classes of gluing maps, giving two types of cluster varieties:
A and X .
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Reminders on cluster varieties

A-varieties

Gluing:

Ak · µ∗k
(
A′k
)

=
∏

j:εkj>0

A
εkj
j +

∏
j:εkj<0

A
−εkj
j

µ∗k
(
A′i
)

= Ai for i 6= k

O (A) is the usual (upper) cluster algebra.

X -varieties

Gluing:

µ∗k
(
X ′i
)

=

X
−1
k for i = k

Xi

(
1 +X

− sgn(εik)
k

)−εik
for i 6= k

X tori endowed with Poisson structure: {Xi, Xj} = εijXiXj .
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The take-away

A compactifies with polytope-Proj construction

Generalizes polytope construction of projective toric varieties.

X (partially) compactifies with fan construction

Generalizes fan construction of toric varieties.

Both cases: natural toric degeneration recovers toric construction in
central fiber.

The degenerations are cluster dual.

Remark

A side worked out in [GHKK18].

We focus on X side.
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Cluster varieties encoded by scattering diagrams.
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Scattering diagrams

Cluster complex

Really subset of scattering diagram encodes A and X :
cluster complex ∆+

∆+ has simplicial fan structure

Maximal cones generated by g-vectors for A clusters (defined later)

{Maximal cones in ∆+} ↔ {Tori in A atlas } ↔ {Tori in X atlas}

A =
⋃

σ∈∆+(max)

TN ;σ/ ∼, X =
⋃

σ∈∆+(max)

TM ;σ/ ∼

A cluster associated to σ basis for char (TN ;σ)

X cluster associated to σ basis for char (TM ;σ)
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Compactifications of A

• Idea: Use ϑ-functions to define graded ring. Take Proj.

How?

Draw a polytope.

Z-points correspond to ϑ-functions.

If multiplication of ϑ-functions compatible with dilations of polytope,
get graded ring. Such polytopes called positive.

Result: Projective variety compactifying A, endowed with ample line
bundle L and basis for the section ring of L. Just like construction of
projective toric varieties by polytopes.
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Compactifications of X

Treating ∆+ as a fan:

X =
⋃

σ∈∆+(max)

Spec
(
C
[
σ∨(Z)gp

])
/ ∼

Much more natural:

X̂ =
⋃

σ∈∆+(max)

Spec
(
C
[
σ∨(Z)

])
/ ∼

Special completion of X [FG16]

Remark

Natural partial compactification of X
Refinements of ∆+ work as well
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Coefficients

A mutation formula can take coefficients in semifield P [FZ02, FZ07]

Principal coefficients:

Ak · µ∗k
(
A′k
)

= t[sgn(εik)ck]+
∏

j:εkj>0

A
εkj
j + t[− sgn(εik)ck]+

∏
j:εkj<0

A
−εkj
j

1 + t1A2

1 + t2A
−1
1

1 + t1t2A
−1
1 A2

The g-vector of a cluster monomial is the degree of its extension with
principal coefficients.
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Coefficients

We introduce coefficients to X mutation formula

Principal coefficients:

µ∗k
(
X ′i
)

=

X
−1
k for i = k

Xi

(
t[sgn(εik)ck]+ + t[− sgn(εik)ck]+X
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Properties of family

Resulting space X̂ is a scheme over R := C [t1, . . . , tn].

Properties of X̂

X̂ → Spec (R) flat family

Cluster dual to [GHKK18]’s Aprin as cluster varieties over R.
We distinguish coefficients and frozen variables.

Fibers X̂t dual to At

X̂t stratified– strata encoded by Star (τ) for τ ∈ ∆+: V (τ)t

V (τ)t union of specially completed X -varieties with coefficients t,
glued by mutation in ambient X̂t

X̂0 is TV (∆+)

V (τ)0 is torus orbit closure V (τ)– embedded toric variety
TV (Star (τ))

X variable Xi;s extends canonically to homogeneous variables of
degree ci;s, whose t→ 0 limit is Xci;s
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Examples and Applications (pursuing with M.-W. Cheung)

Connecting [RW17] and [GHKK18]

RW valuation is degree of extension to X

There is a p∗ map identifying

X with Aprin

RW potential with GHKK potential
RW valuation (degree on X ) with g-vectors (degree on Aprin)
RW NO-body and potential polytope with GHKK potential polytope
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Examples and Applications (pursuing with M.-W. Cheung)

Batyrev-Borisov connection?

Tropical versions of objects in BB mirror construction appear automatically
here, e.g. dual reflexive Gorenstein cones, face-fans for reflexive polytopes.
Example: A ⊂ S, del Pezzo surface of degree 5

TV (P ) = S0 ⊂ Aprin is Gorenstein toric Fano 5a of [CLS11, §8, Table 2].

TV (∆+) = X̂0 ⊂ X̂ is Batyrev dual Gorenstein toric Fano 7a
(del Pezzo 7). What can we say about general fibers?
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