Toric degenerations of cluster varieties

Timothy Magee

Instituto de Matemáticas de la Univesidad Nacional Autónoma de México Unidad Oaxaca

Joint work with Lara Bossinger, Juan Bosco Frías Medina, and Alfredo Nájera Chávez arXiv:1809.08369 [math.AG]

<□ > < @ > < E > < E > E のQ @

 $T = (\mathbb{C}^*)^n$ comes with canonical volume form $\Omega = \frac{dz_1}{z_1} \wedge \cdots \wedge \frac{dz_n}{z_n}$

・ロト・日本・モト・モート ヨー うへで

 $T = (\mathbb{C}^*)^n$ comes with canonical volume form $\Omega = \frac{dz_1}{z_1} \wedge \cdots \wedge \frac{dz_n}{z_n}$

Moral definition

A *cluster variety* is a scheme built out of algebraic tori, birationally glued so that the volume forms on tori patch together giving a global volume form.

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

 $T = (\mathbb{C}^*)^n$ comes with canonical volume form $\Omega = \frac{dz_1}{z_1} \wedge \cdots \wedge \frac{dz_n}{z_n}$

Moral definition

A *cluster variety* is a scheme built out of algebraic tori, birationally glued so that the volume forms on tori patch together giving a global volume form.

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

Why only *moral*?

 $T = (\mathbb{C}^*)^n$ comes with canonical volume form $\Omega = \frac{dz_1}{z_1} \wedge \cdots \wedge \frac{dz_n}{z_n}$

Moral definition

A *cluster variety* is a scheme built out of algebraic tori, birationally glued so that the volume forms on tori patch together giving a global volume form.

- ロ ト - 4 回 ト - 4 □ - 4

Why only *moral*?

• Birational gluing maps far more specific than this.

 $T = (\mathbb{C}^*)^n$ comes with canonical volume form $\Omega = \frac{dz_1}{z_1} \wedge \cdots \wedge \frac{dz_n}{z_n}$

Moral definition

A *cluster variety* is a scheme built out of algebraic tori, birationally glued so that the volume forms on tori patch together giving a global volume form.

Why only *moral*?

- Birational gluing maps far more specific than this.
- Two classes of gluing maps, giving two types of cluster varieties: ${\cal A}$ and ${\cal X}.$

\mathcal{A} -varieties

• Gluing:

$$\begin{split} A_k \cdot \mu_k^* \left(A_k' \right) &= \prod_{j:\epsilon_{kj} > 0} A_j^{\epsilon_{kj}} + \prod_{j:\epsilon_{kj} < 0} A_j^{-\epsilon_{kj}} \\ \mu_k^* \left(A_i' \right) &= A_i \quad \text{for } i \neq k \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$\mathcal{A}\text{-varieties}$

• Gluing:

$$\begin{aligned} A_k \cdot \mu_k^* \left(A_k' \right) &= \prod_{j:\epsilon_{kj} > 0} A_j^{\epsilon_{kj}} + \prod_{j:\epsilon_{kj} < 0} A_j^{-\epsilon_{kj}} \\ \mu_k^* \left(A_i' \right) &= A_i \quad \text{for } i \neq k \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• $\mathcal{O}\left(\mathcal{A}\right)$ is the usual (upper) cluster algebra.

\mathcal{A} -varieties

• Gluing:

$$\begin{split} A_k \cdot \mu_k^* \left(A_k' \right) &= \prod_{j:\epsilon_{kj} > 0} A_j^{\epsilon_{kj}} + \prod_{j:\epsilon_{kj} < 0} A_j^{-\epsilon_{kj}} \\ \mu_k^* \left(A_i' \right) &= A_i \quad \text{for } i \neq k \end{split}$$

• $\mathcal{O}\left(\mathcal{A}\right)$ is the usual (upper) cluster algebra.

$\mathcal{X} ext{-varieties}$

• Gluing:

$$\mu_k^*\left(X_i'\right) = \begin{cases} X_k^{-1} & \text{for } i = k\\ X_i\left(1 + X_k^{-\operatorname{sgn}(\epsilon_{ik})}\right)^{-\epsilon_{ik}} & \text{for } i \neq k \end{cases}$$

\mathcal{A} -varieties

• Gluing:

$$\begin{aligned} A_k \cdot \mu_k^* \left(A_k' \right) &= \prod_{j:\epsilon_{kj} > 0} A_j^{\epsilon_{kj}} + \prod_{j:\epsilon_{kj} < 0} A_j^{-\epsilon_{kj}} \\ \mu_k^* \left(A_i' \right) &= A_i \quad \text{for } i \neq k \end{aligned}$$

• $\mathcal{O}\left(\mathcal{A}\right)$ is the usual (upper) cluster algebra.

\mathcal{X} -varieties

• Gluing:

$$\mu_k^*\left(X_i'\right) = \begin{cases} X_k^{-1} & \text{for } i = k\\ X_i \left(1 + X_k^{-\operatorname{sgn}(\epsilon_{ik})}\right)^{-\epsilon_{ik}} & \text{for } i \neq k \end{cases}$$

• \mathcal{X} tori endowed with Poisson structure: $\{X_i, X_j\} = \epsilon_{ij}X_iX_j$.

The take-away

◆□▶ <圖▶ < ≣▶ < ≣▶ = 9000</p>

 $\bullet~\mathcal{A}$ compactifies with polytope-Proj construction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- $\bullet~\mathcal{A}$ compactifies with polytope-Proj construction
 - Generalizes polytope construction of projective toric varieties.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- $\bullet~\mathcal{A}$ compactifies with polytope-Proj construction
 - Generalizes polytope construction of projective toric varieties.

• \mathcal{X} (partially) compactifies with fan construction

- \mathcal{A} compactifies with polytope-Proj construction
 - Generalizes polytope construction of projective toric varieties.

- \mathcal{X} (partially) compactifies with fan construction
 - Generalizes fan construction of toric varieties.

- $\mathcal A$ compactifies with polytope-Proj construction
 - Generalizes polytope construction of projective toric varieties.
- \mathcal{X} (partially) compactifies with fan construction
 - Generalizes fan construction of toric varieties.
- Both cases: natural toric degeneration recovers toric construction in central fiber.

- $\mathcal A$ compactifies with polytope-Proj construction
 - Generalizes polytope construction of projective toric varieties.
- \mathcal{X} (partially) compactifies with fan construction
 - Generalizes fan construction of toric varieties.
- Both cases: natural toric degeneration recovers toric construction in central fiber.

• The degenerations are cluster dual.

- $\mathcal A$ compactifies with polytope-Proj construction
 - Generalizes polytope construction of projective toric varieties.
- \mathcal{X} (partially) compactifies with fan construction
 - Generalizes fan construction of toric varieties.
- Both cases: natural toric degeneration recovers toric construction in central fiber.

• The degenerations are cluster dual.

Remark

• \mathcal{A} side worked out in [GHKK18].

- ${\mathcal A}$ compactifies with polytope-Proj construction
 - Generalizes polytope construction of projective toric varieties.
- \mathcal{X} (partially) compactifies with fan construction
 - Generalizes fan construction of toric varieties.
- Both cases: natural toric degeneration recovers toric construction in central fiber.

• The degenerations are cluster dual.

Remark

- \mathcal{A} side worked out in [GHKK18].
- We focus on ${\mathcal X}$ side.

Cluster varieties encoded by scattering diagrams.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Cluster varieties encoded by scattering diagrams.

Cluster varieties encoded by scattering diagrams.

Example (A_2 cluster varieties– \mathcal{A} : ϑ -functions)

Cluster varieties encoded by scattering diagrams.

Example (A_2 cluster varieties– \mathcal{A} : ϑ -functions)

$$\mu_1^* \left(A_1' \right) = A_1^{-1} + A_1^{-1} A_2$$

Cluster varieties encoded by scattering diagrams.

Cluster varieties encoded by scattering diagrams.

Dual cones spanned by tropical limits of $\mathcal X$ variables- c-vectors

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Cluster complex

Cluster complex

 \bullet Really subset of scattering diagram encodes $\mathcal A$ and $\mathcal X$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Cluster complex

• Really subset of scattering diagram encodes \mathcal{A} and \mathcal{X} : cluster complex Δ^+

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Cluster complex

• Really subset of scattering diagram encodes ${\cal A}$ and ${\cal X}:$ cluster complex Δ^+

• Δ^+ has simplicial fan structure

Cluster complex

- Really subset of scattering diagram encodes ${\cal A}$ and ${\cal X}:$ cluster complex Δ^+
- Δ^+ has simplicial fan structure
- \bullet Maximal cones generated by $\mathbf{g}\text{-}vectors$ for $\mathcal A$ clusters

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Cluster complex

- Really subset of scattering diagram encodes ${\cal A}$ and ${\cal X}:$ cluster complex Δ^+
- Δ^+ has simplicial fan structure
- Maximal cones generated by g-vectors for \mathcal{A} clusters (defined later)

Cluster complex

- Really subset of scattering diagram encodes \mathcal{A} and \mathcal{X} : cluster complex Δ^+
- Δ^+ has simplicial fan structure
- Maximal cones generated by g-vectors for A clusters (defined later)
- {Maximal cones in Δ^+ } \leftrightarrow {Tori in \mathcal{A} atlas } \leftrightarrow {Tori in \mathcal{X} atlas}

Cluster complex

- Really subset of scattering diagram encodes \mathcal{A} and \mathcal{X} : cluster complex Δ^+
- Δ^+ has simplicial fan structure
- Maximal cones generated by g-vectors for A clusters (defined later)
- {Maximal cones in Δ^+ } \leftrightarrow {Tori in \mathcal{A} atlas } \leftrightarrow {Tori in \mathcal{X} atlas}

$$\mathcal{A} = \bigcup_{\sigma \in \Delta^+(\max)} T_{N;\sigma} / \sim, \qquad \mathcal{X} = \bigcup_{\sigma \in \Delta^+(\max)} T_{M;\sigma} / \sim$$

Cluster complex

- Really subset of scattering diagram encodes \mathcal{A} and \mathcal{X} : cluster complex Δ^+
- Δ^+ has simplicial fan structure
- Maximal cones generated by g-vectors for A clusters (defined later)
- {Maximal cones in Δ^+ } \leftrightarrow {Tori in \mathcal{A} atlas } \leftrightarrow {Tori in \mathcal{X} atlas}

$$\mathcal{A} = \bigcup_{\sigma \in \Delta^+(\max)} T_{N;\sigma} / \sim, \qquad \mathcal{X} = \bigcup_{\sigma \in \Delta^+(\max)} T_{M;\sigma} / \sim$$

• \mathcal{A} cluster associated to σ basis for char $(T_{N;\sigma})$

Cluster complex

- Really subset of scattering diagram encodes \mathcal{A} and \mathcal{X} : cluster complex Δ^+
- Δ^+ has simplicial fan structure
- Maximal cones generated by g-vectors for A clusters (defined later)
- {Maximal cones in Δ^+ } \leftrightarrow {Tori in \mathcal{A} atlas } \leftrightarrow {Tori in \mathcal{X} atlas}

$$\mathcal{A} = \bigcup_{\sigma \in \Delta^+(\max)} T_{N;\sigma} / \sim, \qquad \mathcal{X} = \bigcup_{\sigma \in \Delta^+(\max)} T_{M;\sigma} / \sim$$

- \mathcal{A} cluster associated to σ basis for char $(T_{N;\sigma})$
- \mathcal{X} cluster associated to σ basis for char $(T_{M;\sigma})$
Compactifications of \mathcal{A}

<ロ> <@> < E> < E> E のQの

• Idea: Use ϑ -functions to define graded ring. Take Proj.

• Idea: Use ϑ -functions to define graded ring. Take Proj.

How?

• Idea: Use ϑ -functions to define graded ring. Take Proj.

How?

• Idea: Use ϑ -functions to define graded ring. Take Proj.

How?

• Draw a polytope.

• \mathbb{Z} -points correspond to ϑ -functions.

• Idea: Use ϑ -functions to define graded ring. Take Proj.

How?

- \mathbb{Z} -points correspond to ϑ -functions.
- If multiplication of ϑ -functions compatible with dilations of polytope, get graded ring.

• Idea: Use ϑ -functions to define graded ring. Take Proj.

How?

- \mathbb{Z} -points correspond to ϑ -functions.
- *If* multiplication of *θ*-functions compatible with dilations of polytope, get graded ring. Such polytopes called *positive*.

• Idea: Use ϑ -functions to define graded ring. Take Proj.

How?

- \mathbb{Z} -points correspond to ϑ -functions.
- If multiplication of θ-functions compatible with dilations of polytope, get graded ring. Such polytopes called *positive*.
- Result: Projective variety compactifying \mathcal{A} , endowed with ample line bundle \mathcal{L} and basis for the section ring of \mathcal{L} .

• Idea: Use ϑ -functions to define graded ring. Take Proj.

How?

- \mathbb{Z} -points correspond to ϑ -functions.
- *If* multiplication of *θ*-functions compatible with dilations of polytope, get graded ring. Such polytopes called *positive*.
- Result: Projective variety compactifying A, endowed with ample line bundle \mathcal{L} and basis for the section ring of \mathcal{L} . Just like construction of projective toric varieties by polytopes.

Compactifications of $\mathcal X$

Remark

Previous construction cannot work for \mathcal{X} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Remark

Previous construction cannot work for \mathcal{X} .

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• Generally not many ϑ -functions.

Remark

Previous construction cannot work for \mathcal{X} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Generally not many ϑ -functions.
- \mathcal{X} generally not separated.

Compactifications of $\mathcal X$

Treating Δ^+ as a fan:

$$\mathcal{X} = \bigcup_{\sigma \in \Delta^+(\max)} \operatorname{Spec} \left(\mathbb{C} \left[\sigma^{\vee}(\mathbb{Z})^{\operatorname{gp}} \right] \right) / \sim$$

<□ > < @ > < E > < E > E のQ @

Compactifications of \mathcal{X}

Treating Δ^+ as a fan:

$$\mathcal{X} = \bigcup_{\sigma \in \Delta^+(\max)} \operatorname{Spec} \left(\mathbb{C} \left[\sigma^{\vee}(\mathbb{Z})^{\operatorname{gp}} \right] \right) / \sim$$

Much more natural:

$$\widehat{\mathcal{X}} = \bigcup_{\sigma \in \Delta^+(\max)} \operatorname{Spec}\left(\mathbb{C}\left[\sigma^{\vee}(\mathbb{Z})\right]\right) / \sim$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Special completion of \mathcal{X} [FG16]

Compactifications of $\mathcal X$

Treating Δ^+ as a fan:

$$\mathcal{X} = \bigcup_{\sigma \in \Delta^+(\max)} \operatorname{Spec} \left(\mathbb{C} \left[\sigma^{\vee}(\mathbb{Z})^{\operatorname{gp}} \right] \right) / \sim$$

Much more natural:

$$\widehat{\mathcal{X}} = \bigcup_{\sigma \in \Delta^+(\max)} \operatorname{Spec}\left(\mathbb{C}\left[\sigma^{\vee}(\mathbb{Z})\right]\right) / \sim$$

A D F A B F A B F A B F

3

Special completion of \mathcal{X} [FG16]

Remark

 \bullet Natural partial compactification of ${\cal X}$

Compactifications of $\mathcal X$

Treating Δ^+ as a fan:

$$\mathcal{X} = \bigcup_{\sigma \in \Delta^+(\max)} \operatorname{Spec} \left(\mathbb{C} \left[\sigma^{\vee}(\mathbb{Z})^{\operatorname{gp}} \right] \right) / \sim$$

Much more natural:

$$\widehat{\mathcal{X}} = \bigcup_{\sigma \in \Delta^+(\max)} \operatorname{Spec}\left(\mathbb{C}\left[\sigma^{\vee}(\mathbb{Z})\right]\right) / \sim$$

A D F A B F A B F A B F

э

Special completion of \mathcal{X} [FG16]

Remark

- \bullet Natural partial compactification of ${\cal X}$
- Refinements of Δ^+ work as well

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

 $\mathcal A$ mutation formula can take coefficients in semifield $\mathbb P$ [FZ02, FZ07]

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

 ${\cal A}$ mutation formula can take coefficients in semifield ${\mathbb P}$ [FZ02, FZ07] Without coefficients:

$$A_k \cdot \mu_k^* \left(A_k' \right) = \prod_{j:\epsilon_{kj} > 0} A_j^{\epsilon_{kj}} + \prod_{j:\epsilon_{kj} < 0} A_j^{-\epsilon_{kj}}$$

 ${\cal A}$ mutation formula can take coefficients in semifield ${\mathbb P}$ [FZ02, FZ07] With coefficients:

$$A_k \cdot \mu_k^* \left(A_k' \right) = p^+ \prod_{j:\epsilon_{kj} > 0} A_j^{\epsilon_{kj}} + p^- \prod_{j:\epsilon_{kj} < 0} A_j^{-\epsilon_{kj}}$$

 ${\cal A}$ mutation formula can take coefficients in semifield ${\mathbb P}$ [FZ02, FZ07] Principal coefficients:

$$A_k \cdot \mu_k^* \left(A_k' \right) = \mathbf{t}^{[\operatorname{sgn}(\epsilon_{ik})\mathbf{c}_k]_+} \prod_{j:\epsilon_{kj} > 0} A_j^{\epsilon_{kj}} + \mathbf{t}^{[-\operatorname{sgn}(\epsilon_{ik})\mathbf{c}_k]_+} \prod_{j:\epsilon_{kj} < 0} A_j^{-\epsilon_{kj}}$$

 ${\cal A}$ mutation formula can take coefficients in semifield ${\mathbb P}$ [FZ02, FZ07] Principal coefficients:

 $A_k \cdot \mu_k^* \left(A_k' \right) = \mathbf{t}^{[\operatorname{sgn}(\epsilon_{ik})\mathbf{c}_k]_+} \prod_{j:\epsilon_{k,i} > 0} A_j^{\epsilon_{kj}} + \mathbf{t}^{[-\operatorname{sgn}(\epsilon_{ik})\mathbf{c}_k]_+} \prod_{j:\epsilon_{k,i} < 0} A_j^{-\epsilon_{kj}}$ $j:\epsilon_{kj}>0$ $j:\epsilon_{kj}<0$ $\frac{1 + t_1 A_2}{1 + t_2 A_1^{-1}}$ $1 + t_1 t_2 A_1^{-1} A_2$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 ${\cal A}$ mutation formula can take coefficients in semifield ${\mathbb P}$ [FZ02, FZ07] Principal coefficients:

 $A_k \cdot \mu_k^* \left(A_k' \right) = \mathbf{t}^{[\operatorname{sgn}(\epsilon_{ik})\mathbf{c}_k]_+} \prod_{j:\epsilon_{kj}>0} A_j^{\epsilon_{kj}} + \mathbf{t}^{[-\operatorname{sgn}(\epsilon_{ik})\mathbf{c}_k]_+} \prod_{j:\epsilon_{kj}<0} A_j^{-\epsilon_{kj}}$ $1 + t_1 A_2$ $1 + t_2 A_1^{-1}$ $1 + t_1 t_2 A_1^{-1} A_2$

The g-vector of a cluster monomial is the degree of its extension with principal coefficients.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

We introduce coefficients to $\ensuremath{\mathcal{X}}$ mutation formula

We introduce coefficients to $\ensuremath{\mathcal{X}}$ mutation formula Without coefficients:

$$\mu_k^*\left(X_i'\right) = \begin{cases} X_k^{-1} & \text{for } i = k\\ X_i\left(1 + X_k^{-\operatorname{sgn}(\epsilon_{ik})}\right)^{-\epsilon_{ik}} & \text{for } i \neq k \end{cases}$$

We introduce coefficients to $\ensuremath{\mathcal{X}}$ mutation formula With coefficients:

$$\mu_k^*\left(X_i'\right) = \begin{cases} X_k^{-1} & \text{for } i = k\\ X_i \left(p^+ + p^- X_k^{-\operatorname{sgn}(\epsilon_{ik})}\right)^{-\epsilon_{ik}} & \text{for } i \neq k \end{cases}$$

We introduce coefficients to \mathcal{X} mutation formula **Principal coefficients:**

$$\mu_k^*\left(X_i'\right) = \begin{cases} X_k^{-1} & \text{for } i = k\\ X_i \left(\mathbf{t}^{[\operatorname{sgn}(\epsilon_{ik})\mathbf{c}_k]_+} + \mathbf{t}^{[-\operatorname{sgn}(\epsilon_{ik})\mathbf{c}_k]_+} X_k^{-\operatorname{sgn}(\epsilon_{ik})} \right)^{-\epsilon_{ik}} & \text{for } i \neq k \end{cases}$$

We introduce coefficients to \mathcal{X} mutation formula **Principal coefficients:**

$$\mu_{k}^{*}\left(X_{i}^{\prime}\right) = \begin{cases} X_{k}^{-1} & \text{for } i = k \\ X_{i}\left(\mathbf{t}^{[\operatorname{sgn}(\epsilon_{ik})\mathbf{c}_{k}]_{+}} + \mathbf{t}^{[-\operatorname{sgn}(\epsilon_{ik})\mathbf{c}_{k}]_{+}} X_{k}^{-\operatorname{sgn}(\epsilon_{ik})}\right)^{-\epsilon_{ik}} & \text{for } i \neq k \end{cases}$$

$$X_{2}\left(1 + t_{1}X_{1}\right) X_{2} \\ X_{1}^{-1} & X_{1} \\ X_{1}^{-1}\left(1 + t_{2}X_{2} + t_{1}t_{2}X_{1}X_{2}\right) \\ X_{2}^{-1}\left(1 + t_{1}X_{1}\right)^{-1} & X_{2}^{-1} \\ X_{2}^{-1}\left(t_{1}t_{2} + t_{2}X_{1}^{-1} + X_{1}^{-1}X_{2}^{-1}\right)^{-1} \\ X_{2}^{-1}\left(t_{1}t_{2} + X_{2}^{-1}\right) \\ X_{2}^{-1}\left(t_{1}t_{2} + X_{2}^{-1}\right) \\ X_{2}^{-1}\left(t_{2} + X_{2}^{-1}\right) \\ X$$

<□ > < @ > < E > < E > E のQ @

Resulting space $\widehat{\mathscr{X}}$ is a scheme over $R := \mathbb{C}[t_1, \ldots, t_n].$

・ロト・日本・モト・モート ヨー うへで

Resulting space $\widehat{\mathscr{X}}$ is a scheme over $R := \mathbb{C}[t_1, \ldots, t_n].$

Properties of $\widehat{\mathscr{X}}$

• $\widehat{\mathscr{X}} \to \operatorname{Spec}\left(R\right)$ flat family

Resulting space $\widehat{\mathscr{X}}$ is a scheme over $R := \mathbb{C}[t_1, \ldots, t_n].$

Properties of $\widehat{\mathscr{X}}$

- $\widehat{\mathscr{X}} \to \operatorname{Spec}\left(R\right)$ flat family
- Cluster dual to [GHKK18]'s A_{prin} as cluster varieties over R.

Resulting space $\widehat{\mathscr{X}}$ is a scheme over $R := \mathbb{C}[t_1, \ldots, t_n]$.

Properties of $\widehat{\mathscr{X}}$

- $\widehat{\mathscr{X}} \to \operatorname{Spec}(R)$ flat family
- Cluster dual to [GHKK18]'s A_{prin} as cluster varieties over R. We distinguish coefficients and frozen variables.
Resulting space $\widehat{\mathscr{X}}$ is a scheme over $R := \mathbb{C}[t_1, \ldots, t_n].$

- $\widehat{\mathscr{X}} \to \operatorname{Spec}(R)$ flat family
- Cluster dual to [GHKK18]'s A_{prin} as cluster varieties over R. We distinguish coefficients and frozen variables.
- \bullet Fibers $\widehat{\mathcal{X}}_t$ dual to \mathcal{A}_t

Resulting space $\widehat{\mathscr{X}}$ is a scheme over $R := \mathbb{C}[t_1, \ldots, t_n].$

- $\widehat{\mathscr{X}} \to \operatorname{Spec}(R)$ flat family
- Cluster dual to [GHKK18]'s A_{prin} as cluster varieties over R. We distinguish coefficients and frozen variables.
- \bullet Fibers $\widehat{\mathcal{X}}_{\mathbf{t}}$ dual to $\mathcal{A}_{\mathbf{t}}$
- $\widehat{\mathcal{X}}_{\mathbf{t}}$ stratified- strata encoded by $\operatorname{Star}(\tau)$ for $\tau \in \Delta^+$: $V(\tau)_{\mathbf{t}}$

Resulting space $\widehat{\mathscr{X}}$ is a scheme over $R := \mathbb{C}[t_1, \ldots, t_n]$.

- $\widehat{\mathscr{X}} \to \operatorname{Spec}(R)$ flat family
- Cluster dual to [GHKK18]'s A_{prin} as cluster varieties over R. We distinguish coefficients and frozen variables.
- \bullet Fibers $\widehat{\mathcal{X}}_t$ dual to \mathcal{A}_t
- $\widehat{\mathcal{X}}_{\mathbf{t}}$ stratified- strata encoded by $\operatorname{Star}(\tau)$ for $\tau \in \Delta^+$: $V(\tau)_{\mathbf{t}}$
- $V(\tau)_t$ union of specially completed \mathcal{X} -varieties with coefficients t, glued by mutation in ambient $\widehat{\mathcal{X}}_t$

Resulting space $\widehat{\mathscr{X}}$ is a scheme over $R := \mathbb{C}[t_1, \ldots, t_n]$.

- $\widehat{\mathscr{X}} \to \operatorname{Spec}(R)$ flat family
- Cluster dual to [GHKK18]'s A_{prin} as cluster varieties over R. We distinguish coefficients and frozen variables.
- \bullet Fibers $\widehat{\mathcal{X}}_t$ dual to \mathcal{A}_t
- $\widehat{\mathcal{X}}_{\mathbf{t}}$ stratified- strata encoded by $\operatorname{Star}(\tau)$ for $\tau \in \Delta^+$: $V(\tau)_{\mathbf{t}}$
- $V(\tau)_t$ union of specially completed \mathcal{X} -varieties with coefficients t, glued by mutation in ambient $\widehat{\mathcal{X}}_t$
- $\widehat{\mathcal{X}}_{\mathbf{0}}$ is $\mathrm{TV}\left(\Delta^{+}\right)$

Resulting space $\widehat{\mathscr{X}}$ is a scheme over $R := \mathbb{C}[t_1, \ldots, t_n]$.

- $\widehat{\mathscr{X}} \to \operatorname{Spec}(R)$ flat family
- Cluster dual to [GHKK18]'s A_{prin} as cluster varieties over R. We distinguish coefficients and frozen variables.
- \bullet Fibers $\widehat{\mathcal{X}}_t$ dual to \mathcal{A}_t
- $\widehat{\mathcal{X}}_{\mathbf{t}}$ stratified- strata encoded by $\operatorname{Star}(\tau)$ for $\tau \in \Delta^+$: $V(\tau)_{\mathbf{t}}$
- $V(\tau)_t$ union of specially completed \mathcal{X} -varieties with coefficients t, glued by mutation in ambient $\widehat{\mathcal{X}}_t$
- $\widehat{\mathcal{X}}_{\mathbf{0}}$ is $\mathrm{TV}\left(\Delta^{+}\right)$
- $V(\tau)_{\mathbf{0}}$ is torus orbit closure $V(\tau)-$ embedded toric variety $\mathrm{TV}\left(\mathrm{Star}\left(\tau\right)\right)$

Resulting space $\widehat{\mathscr{X}}$ is a scheme over $R := \mathbb{C}[t_1, \ldots, t_n]$.

- $\widehat{\mathscr{X}} \to \operatorname{Spec}(R)$ flat family
- Cluster dual to [GHKK18]'s A_{prin} as cluster varieties over R. We distinguish coefficients and frozen variables.
- \bullet Fibers $\widehat{\mathcal{X}}_t$ dual to \mathcal{A}_t
- $\widehat{\mathcal{X}}_{\mathbf{t}}$ stratified- strata encoded by $\operatorname{Star}(\tau)$ for $\tau \in \Delta^+$: $V(\tau)_{\mathbf{t}}$
- $V(\tau)_t$ union of specially completed \mathcal{X} -varieties with coefficients t, glued by mutation in ambient $\widehat{\mathcal{X}}_t$
- $\widehat{\mathcal{X}}_{\mathbf{0}}$ is $\mathrm{TV}\left(\Delta^{+}\right)$
- $V(\tau)_{\mathbf{0}}$ is torus orbit closure $V(\tau)-$ embedded toric variety $\mathrm{TV}\left(\mathrm{Star}\left(\tau\right)\right)$
- \mathcal{X} variable $X_{i;s}$ extends canonically to homogeneous variables of degree $\mathbf{c}_{i;s}$, whose $\mathbf{t} \to 0$ limit is $\mathbf{X}^{\mathbf{c}_{i;s}}$

Connecting [RW17] and [GHKK18]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Connecting [RW17] and [GHKK18]

 $\bullet~{\rm RW}$ valuation is degree of extension to $\mathscr X$

Connecting [RW17] and [GHKK18]

- \bullet RW valuation is degree of extension to $\mathscr X$
- $\bullet\,$ There is a p^* map identifying
 - $\mathscr X$ with $\mathcal A_{\mathrm{prin}}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Connecting [RW17] and [GHKK18]

- $\bullet~{\rm RW}$ valuation is degree of extension to $\mathscr X$
- $\bullet\,$ There is a p^* map identifying
 - \mathscr{X} with $\mathcal{A}_{\mathrm{prin}}$
 - RW potential with GHKK potential

Connecting [RW17] and [GHKK18]

- RW valuation is degree of extension to $\mathscr X$
- There is a p^* map identifying
 - $\mathscr X$ with $\mathcal A_{\mathrm{prin}}$
 - RW potential with GHKK potential
 - RW valuation (degree on $\mathscr{X})$ with g-vectors (degree on $\mathcal{A}_{\mathrm{prin}})$

Connecting [RW17] and [GHKK18]

- $\bullet~{\rm RW}$ valuation is degree of extension to $\mathscr X$
- There is a p^* map identifying
 - $\mathscr X$ with $\mathcal A_{\mathrm{prin}}$
 - RW potential with GHKK potential
 - $\bullet\,$ RW valuation (degree on $\mathscr{X})$ with g-vectors (degree on $\mathcal{A}_{\rm prin})$
 - RW NO-body and potential polytope with GHKK potential polytope

Batyrev-Borisov connection?

Batyrev-Borisov connection?

Tropical versions of objects in BB mirror construction appear automatically here, *e.g.* dual reflexive Gorenstein cones, face-fans for reflexive polytopes.

Tropical versions of objects in BB mirror construction appear automatically here, *e.g.* dual reflexive Gorenstein cones, face-fans for reflexive polytopes. **Example:** $A \subset S$, del Pezzo surface of degree 5

Tropical versions of objects in BB mirror construction appear automatically here, *e.g.* dual reflexive Gorenstein cones, face-fans for reflexive polytopes. **Example:** $A \subset S$, del Pezzo surface of degree 5

 $TV(P) = S_0 \subset \overline{A_{prin}}$ is Gorenstein toric Fano 5a of [CLS11, §8, Table 2].

Tropical versions of objects in BB mirror construction appear automatically here, *e.g.* dual reflexive Gorenstein cones, face-fans for reflexive polytopes. **Example:** $A \subset S$, del Pezzo surface of degree 5

 $\operatorname{TV}(P) = S_{\mathbf{0}} \subset \overline{\mathcal{A}_{\operatorname{prin}}}$ is Gorenstein toric Fano 5a of [CLS11, §8, Table 2]. $\operatorname{TV}(\Delta^+) = \widehat{\mathcal{X}}_{\mathbf{0}} \subset \widehat{\mathscr{X}}$ is Batyrev dual Gorenstein toric Fano 7a (del Pezzo 7).

Tropical versions of objects in BB mirror construction appear automatically here, *e.g.* dual reflexive Gorenstein cones, face-fans for reflexive polytopes. **Example:** $A \subset S$, del Pezzo surface of degree 5

 $TV(P) = S_0 \subset \overline{\mathcal{A}_{prin}}$ is Gorenstein toric Fano 5a of [CLS11, §8, Table 2]. $TV(\Delta^+) = \widehat{\mathcal{X}_0} \subset \widehat{\mathscr{X}}$ is Batyrev dual Gorenstein toric Fano 7a (del Pezzo 7). What can we say about general fibers?

References

[CLS11] D. A. Cox, J. B. Little and H. K. Schenck, *Toric varieties*, volume 124 of *Graduate Studies in Mathematics*, American Mathematical Society, Providence, RI, 2011.

- [FG16] V. V. Fock and A. B. Goncharov, Cluster Poisson varieties at infinity, Selecta Math. (N.S.) 22(4), 2569–2589 (2016).
- [FZ02] S. Fomin and A. Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15(2), 497–529 (2002).
- [FZ07] S. Fomin and A. Zelevinsky, Cluster algebras. IV. Coefficients, Compos. Math. 143(1), 112–164 (2007).
- [GHKK18] M. Gross, P. Hacking, S. Keel and M. Kontsevich, Canonical bases for cluster algebras, J. Amer. Math. Soc. 31(2), 497–608 (2018).
 - [RW17] K. Rietsch and L. Williams, Newton-Okounkov bodies, cluster duality, and mirror symmetry for Grassmannians, arXiv preprint arXiv:1712.00447 [math.AG] (2017).