Littlewood-Richardson coefficients from Mirror Symmetry

Timothy Magee

Imperial College London

arXiv:1709.05776 [math.AG]

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Motivating Question

How do we decompose a tensor product of irreducible GL_n representations as a direct sum?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Motivating Question

How do we decompose a tensor product of irreducible GL_n representations as a direct sum?

$$V_{\alpha} \otimes V_{\beta} = \bigoplus_{\gamma} V_{\gamma}^{\oplus c_{\alpha,\beta}^{\gamma}}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Motivating Question

How do we decompose a tensor product of irreducible GL_n representations as a direct sum?

$$V_{lpha} \otimes V_{eta} = \bigoplus_{\gamma} V_{\gamma}^{\oplus c_{lpha,eta}^{\gamma}}$$

How do we compute the **Littlewood-Richardson coefficients** $c_{\alpha\beta}^{\gamma}$?

Outline

• Review of Knutson-Tao hive cone

Outline

- Review of Knutson-Tao hive cone
- Representation theory set-up: Which space should we study?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Outline

- Review of Knutson-Tao hive cone
- Representation theory set-up: Which space should we study?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Log Calabi-Yau mirror symmetry background and solution

Advantages of Mirror Symmetry Approach

• Lots of cones, intrinsic "cone"

Advantages of Mirror Symmetry Approach

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Lots of cones, intrinsic "cone"
- Canonical Bases

Advantages of Mirror Symmetry Approach

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Lots of cones, intrinsic "cone"
- Canonical Bases
- Very general construction

$$V_{\alpha} \otimes V_{\beta} = \bigoplus_{\gamma} V_{\gamma}^{\oplus c_{\alpha,\beta}^{\gamma}}$$

$$V_{lpha}\otimes V_{eta}{\mathord{ \otimes } } V_{\delta}=igoplus_{\gamma}V_{\gamma}^{\oplus c_{lpha,eta}^{\gamma}}{\mathord{ \otimes } } V_{\delta}$$

$$\left(V_{lpha}\otimes V_{eta}\otimes V_{\delta}
ight)^{\operatorname{GL}_n}=\left(\bigoplus_{\gamma}V_{\gamma}^{\oplus c_{lpha,eta}^{\gamma}}\otimes V_{\delta}
ight)^{\operatorname{GL}_n}$$

$$\left(V_{\alpha}\otimes V_{\beta}\otimes V_{\delta}\right)^{\operatorname{GL}_{n}}=\operatorname{id}_{\mathbb{C}}^{\oplus c_{\alpha,\beta}^{-w_{0}(\delta)}}$$

$$\left(V_{\alpha}\otimes V_{\beta}\otimes V_{\delta}\right)^{\operatorname{GL}_{n}}=\operatorname{id}_{\mathbb{C}}^{\oplus c_{\alpha,\beta}^{-w_{0}(\delta)}}$$

Given three irreducible GL_n representations V_{α} , V_{β} , V_{γ} , what is the dimension of $(V_{\alpha} \otimes V_{\beta} \otimes V_{\gamma})^{\operatorname{GL}_n}$?

• Start with $\mathcal{H} = \left\{ (a, b, c) \in (\mathbb{Z}_{\geq 0})^3 \ \Big| \ a + b + c = n \right\}$. Take real labelings $\mathbb{R}^{\mathcal{H}}$.

 \mathcal{H} for n=4

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三重 - 釣A(?)

- Start with $\mathcal{H} = \left\{ (a, b, c) \in (\mathbb{Z}_{\geq 0})^3 \ \middle| \ a + b + c = n \right\}$. Take real labelings $\mathbb{R}^{\mathcal{H}}$.
- Impose rhombus inequalities.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Start with $\mathcal{H} = \left\{ (a, b, c) \in (\mathbb{Z}_{\geq 0})^3 \ \middle| \ a + b + c = n \right\}$. Take real labelings $\mathbb{R}^{\mathcal{H}}$.
- Impose rhombus inequalities.
- Take quotient by linear subspace spanned by $\mathbf{1}_{\mathcal{H}}$.

Result is the Knutson-Tao hive cone. Its points are called hives.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

To compute dim $(V_{\alpha} \otimes V_{\beta} \otimes V_{\gamma})^{\mathrm{GL}_n}$:

• Fill the border as shown.

To compute $\dim (V_{\alpha} \otimes V_{\beta} \otimes V_{\gamma})^{\operatorname{GL}_n}$:

- Fill the border as shown.
- Count integral hives with this border.

Petr-Weyl Theorem

Let G be a reductive group. As $G\times G$ bimodules

$$\mathcal{O}(G) = \bigoplus_{\lambda} V_{\lambda} \otimes V_{\lambda}^*$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where the sum is over isomorphism classes of irreducible rational representations of G.

Consequence for $G = GL_n$

$$\mathcal{O}(\mathrm{GL}_n) = \bigoplus_{\lambda} V_{\lambda} \otimes V_{\lambda}^*$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Consequence for $G = GL_n$

$$\mathcal{O}(\mathrm{GL}_n)^{1\times U} = \left(\bigoplus_{\lambda} V_{\lambda} \otimes V_{\lambda}^*\right)^{1\times U}$$

where U consists of upper triangular matrices with all diagonal entries 1.

Consequence for $G = GL_n$

$$\mathcal{O}(\operatorname{GL}_n/U) = \bigoplus_{\lambda} V_{\lambda} \otimes \mathbb{C} \cdot u_{\lambda}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

where u_{λ} is the highest weight vector of V_{λ}^* .

Consequence for $G = GL_n$

$$\mathcal{O}(\operatorname{GL}_n/U) = \bigoplus_{\lambda} V_{\lambda}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

This is a weight space decomposition for right action of maximal torus, with V_{λ} the $-w_0(\lambda)$ weight space.

Consequence for $G = GL_n$

$$\mathcal{O}(\operatorname{GL}_n/U) = \bigoplus_{\lambda} V_{\lambda}$$

This is a weight space decomposition for right action of maximal torus, with V_{λ} the $-w_0(\lambda)$ weight space.

$\operatorname{Conf}_3(\operatorname{GL}_n/U)$

Interested in the spaces $(V_{\alpha} \otimes V_{\beta} \otimes V_{\gamma})^{\operatorname{GL}_n}$.

$$\mathcal{O}\left(\operatorname{GL}_n/U\right) = \bigoplus_{\alpha} V_{\alpha}$$

Consequence for $G = GL_n$

$$\mathcal{O}(\operatorname{GL}_n/U) = \bigoplus_{\lambda} V_{\lambda}$$

This is a weight space decomposition for right action of maximal torus, with V_{λ} the $-w_0(\lambda)$ weight space.

$\operatorname{Conf}_3(\operatorname{GL}_n/U)$

Interested in the spaces $(V_{\alpha} \otimes V_{\beta} \otimes V_{\gamma})^{\operatorname{GL}_n}$.

$$\mathcal{O}\left((\operatorname{GL}_n/U)^{\times 3}\right) = \bigoplus_{\alpha,\beta,\gamma} V_{\alpha} \otimes V_{\beta} \otimes V_{\gamma}$$

Consequence for $G = GL_n$

$$\mathcal{O}(\operatorname{GL}_n/U) = \bigoplus_{\lambda} V_{\lambda}$$

This is a weight space decomposition for right action of maximal torus, with V_{λ} the $-w_0(\lambda)$ weight space.

$\operatorname{Conf}_3(\operatorname{GL}_n/U)$

Interested in the spaces $(V_{\alpha} \otimes V_{\beta} \otimes V_{\gamma})^{\operatorname{GL}_n}$.

$$\mathcal{O}\left(\operatorname{GL}_n \setminus (\operatorname{GL}_n / U)^{\times 3}\right) = \left(\bigoplus_{\alpha, \beta, \gamma} V_\alpha \otimes V_\beta \otimes V_\gamma\right)^{\operatorname{GL}_n}$$

Consequence for $G = GL_n$

$$\mathcal{O}(\operatorname{GL}_n/U) = \bigoplus_{\lambda} V_{\lambda}$$

This is a weight space decomposition for right action of maximal torus, with V_{λ} the $-w_0(\lambda)$ weight space.

$\operatorname{Conf}_3(\operatorname{GL}_n/U)$

Interested in the spaces $(V_{\alpha} \otimes V_{\beta} \otimes V_{\gamma})^{\operatorname{GL}_n}$.

$$\mathcal{O}\left(\operatorname{GL}_n \setminus (\operatorname{GL}_n / U)^{\times 3}\right) = \left(\bigoplus_{\alpha, \beta, \gamma} V_\alpha \otimes V_\beta \otimes V_\gamma\right)^{\operatorname{GL}_r}$$

 $\operatorname{Conf}_3(\operatorname{GL}_n/U) := \operatorname{GL}_n \setminus (\operatorname{GL}_n/U)^{\times 3}$ defined and studied in [FG06], [GS15].

Definition (Log Calabi-Yau variety)

A smooth complex variety U with a unique volume form Ω having at worst a simple pole along any divisor in any compactification of U

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Definition (Log Calabi-Yau variety)

A smooth complex variety U with a unique volume form Ω having at worst a simple pole along any divisor in any compactification of U

Example

Algebraic torus
$$T = (\mathbb{C}^*)^n$$
, $\Omega = \frac{dz_1}{z_1} \wedge \cdots \wedge \frac{dz_n}{z_n}$

Definition (Log Calabi-Yau variety)

A smooth complex variety U with a unique volume form Ω having at worst a simple pole along any divisor in any compactification of U

Example

Algebraic torus $T = (\mathbb{C}^*)^n$, $\Omega = \frac{dz_1}{z_1} \wedge \cdots \wedge \frac{dz_n}{z_n}$ **Fact:** If (Y, D) is any toric variety with its toric boundary divisor, then Ω has a simple pole along each component of D.

Example (Carefully glued tori)

$$U = \bigcup_{i} T_{i} / \sim$$
$$\mu_{ij} : T_{i} \dashrightarrow T_{j}, \qquad \mu_{ij}^{*} (\Omega_{j}) = \Omega_{i}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Example (Carefully glued tori)

$$U = \bigcup_{i} T_{i} / \sim$$
$$\mu_{ij} : T_{i} \dashrightarrow T_{j}, \qquad \mu_{ij}^{*} (\Omega_{j}) = \Omega_{i}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Example (Blow-up of toric variety)

Example (Carefully glued tori)

$$U = \bigcup_{i} T_{i} / \sim$$
$$\mu_{ij} : T_{i} \dashrightarrow T_{j}, \qquad \mu_{ij}^{*} (\Omega_{j}) = \Omega_{i}$$

Example (Blow-up of toric variety)

•
$$(\overline{Y},\overline{D})$$
 toric variety

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example (Carefully glued tori)

$$U = \bigcup_{i} T_{i} / \sim$$
$$\mu_{ij} : T_{i} \dashrightarrow T_{j}, \qquad \mu_{ij}^{*} (\Omega_{j}) = \Omega_{i}$$

Example (Blow-up of toric variety)

- $\bullet \ (\overline{Y},\overline{D})$ toric variety
- $H \subset \overline{D}$ codim 1 locus of boundary (codim 2 in \overline{Y})

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで
Cluster Varieties: Context and Definition ([GHK15])

Example (Carefully glued tori)

$$U = \bigcup_{i} T_{i} / \sim$$
$$\mu_{ij} : T_{i} \dashrightarrow T_{j}, \qquad \mu_{ij}^{*} (\Omega_{j}) = \Omega_{i}$$

Example (Blow-up of toric variety)

- $\bullet~(\overline{Y},\overline{D})$ toric variety
- $H \subset \overline{D}$ codim 1 locus of boundary (codim 2 in \overline{Y})
- (Y,D) blow-up of \overline{Y} along H, together with strict transform of \overline{D}

Cluster Varieties: Context and Definition ([GHK15])

Example (Carefully glued tori)

$$U = \bigcup_{i} T_{i} / \sim$$
$$\mu_{ij} : T_{i} \dashrightarrow T_{j}, \qquad \mu_{ij}^{*} (\Omega_{j}) = \Omega_{i}$$

Example (Blow-up of toric variety)

- $\bullet~(\overline{Y},\overline{D})$ toric variety
- $H \subset \overline{D}$ codim 1 locus of boundary (codim 2 in \overline{Y})
- (Y,D) blow-up of \overline{Y} along H, together with strict transform of \overline{D}
- $\bullet \ U \mathrel{\mathop:}= Y \setminus D \text{ is log CY}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Cluster Varieties: Context and Definition ([GHK15])

Example (Carefully glued tori)

$$U = \bigcup_{i} T_{i} / \sim$$
$$\mu_{ij} : T_{i} \dashrightarrow T_{j}, \qquad \mu_{ij}^{*} (\Omega_{j}) = \Omega_{i}$$

Example (Blow-up of toric variety)

- $\bullet \ (\overline{Y},\overline{D}) \ {\rm toric} \ {\rm variety}$
- $H \subset \overline{D}$ codim 1 locus of boundary (codim 2 in \overline{Y})
- (Y,D) blow-up of \overline{Y} along H, together with strict transform of \overline{D}
- $U := Y \setminus D$ is log CY

Two ways of describing a Cluster Variety

Decorated flags

• Let a **decorated flag** be a complete flag $X_{\bullet} = (X_1 \subset \cdots \subset X_n)$, together with a non-zero vector $x_i \in X_i/X_{i-1}$ in each successive quotient.

- Let a **decorated flag** be a complete flag $X_{\bullet} = (X_1 \subset \cdots \subset X_n)$, together with a non-zero vector $x_i \in X_i/X_{i-1}$ in each successive quotient.
- The decorated flag variety $\widetilde{\mathcal{F}}$ parametrizes these, and is isomorphic to GL_n/U .

- Let a **decorated flag** be a complete flag $X_{\bullet} = (X_1 \subset \cdots \subset X_n)$, together with a non-zero vector $x_i \in X_i/X_{i-1}$ in each successive quotient.
- The decorated flag variety $\widetilde{\mathcal{F}}$ parametrizes these, and is isomorphic to GL_n/U .
- $Conf_3(\widetilde{\mathcal{F}\ell})$ parametrizes triples of decorated flags, defined up to diagonal GL_n action.

- Let a **decorated flag** be a complete flag $X_{\bullet} = (X_1 \subset \cdots \subset X_n)$, together with a non-zero vector $x_i \in X_i/X_{i-1}$ in each successive quotient.
- The decorated flag variety $\widetilde{\mathcal{F}}\ell$ parametrizes these, and is isomorphic to GL_n/U .
- $Conf_3(\widetilde{\mathcal{F}\ell})$ parametrizes triples of decorated flags, defined up to diagonal GL_n action.
- (X_●, Y_●) is in generic position if X_i and Y_{n-i} intersect transversely for all i.

- Let a **decorated flag** be a complete flag $X_{\bullet} = (X_1 \subset \cdots \subset X_n)$, together with a non-zero vector $x_i \in X_i/X_{i-1}$ in each successive quotient.
- The decorated flag variety $\widetilde{\mathcal{F}}\ell$ parametrizes these, and is isomorphic to GL_n/U .
- $Conf_3(\widetilde{\mathcal{F}\ell})$ parametrizes triples of decorated flags, defined up to diagonal GL_n action.
- (X_●, Y_●) is in generic position if X_i and Y_{n-i} intersect transversely for all i.
- Conf[×]₃(*F*ℓ) ⊂ Conf₃(*F*ℓ) is the locus where triples of decorated flags (X, Y, Z) := ((X_•, x_•), (Y_•, y_•), (Z_•, z_•)) are in generic configuration, meaning each pair of flags is in generic position.

• Take $V \cong \mathbb{C}^n$, and choose volume form $\omega \in \wedge^n V^*$.

- Take $V \cong \mathbb{C}^n$, and choose volume form $\omega \in \wedge^n V^*$.
- Define $A_{(a,b,c)}: (X,Y,Z) \mapsto \omega(x_1,\ldots,x_a,y_1,\ldots,y_b,z_1,\ldots,z_c).$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Take $V \cong \mathbb{C}^n$, and choose volume form $\omega \in \wedge^n V^*$.
- Define $A_{(a,b,c)}: (X,Y,Z) \mapsto \omega(x_1,\ldots,x_a,y_1,\ldots,y_b,z_1,\ldots,z_c).$

$A_{(4,0,0)}$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 $A_{(4,0,0)}$

 $A_{(4,0,0)}$

• Initial cluster and quiver for a torus in $\mathrm{SL}_n \setminus \widetilde{\mathcal{F}\ell}^{\times 3}$.

 $A_{(4,0,0)}$

(日) (日) (日) (日) (日) (日) (日) (日)

• Initial cluster and quiver for a torus in $\mathrm{SL}_n \setminus \widetilde{\mathcal{F}\ell}^{\times 3}$.

• Note that $A_{(a,b,c)}$ respects the quotient by SL_n .

 $A_{(4,0,0)}$

• Initial cluster and quiver for a torus in $\operatorname{SL}_n \setminus \widetilde{\mathcal{F}\ell}^{\times 3}$.

• Note that $A_{(a,b,c)}$ respects the quotient by SL_n .

• $\prod_{a+b+c=n} A_{(a,b,c)}^{r_{(a,b,c)}} \text{ is fixed by } \operatorname{GL}_n \text{ if and only if } \sum_{a+b+c=n} r_{(a,b,c)} = 0.$

くしゃ 本語 アメヨア メヨア しゅう

$$\operatorname{Conf}_{3}^{\times}(\widetilde{\mathcal{F}\ell}) \xrightarrow{} \operatorname{Conf}_{3}(\widetilde{\mathcal{F}\ell}) \xrightarrow{} \operatorname{Conf}_{3}(\mathcal{F\ell}) \xrightarrow{} \operatorname{Conf}_{3}(\mathcal{F\ell}) \xrightarrow{} \operatorname{Conf}_{3}(\mathcal{F\ell})$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Strategy

• Equip $\mathcal{O}(\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell}))$ with a canonical basis \mathbf{B}^{\times} .

Strategy

- Equip $\mathcal{O}(\operatorname{Conf}_3^{\times}(\mathcal{F}\ell))$ with a canonical basis \mathbf{B}^{\times} .
- Describe $\mathbf{B} := \mathbf{B}^{\times} \cap \mathcal{O}(\operatorname{Conf}_{\mathbf{3}}(\widetilde{\mathcal{F}\ell}))$ and show it is a basis for $\mathcal{O}(\operatorname{Conf}_{\mathbf{3}}(\widetilde{\mathcal{F}\ell})) = \bigoplus_{\alpha,\beta,\gamma} (V_{\alpha} \otimes V_{\beta} \otimes V_{\gamma})^{\operatorname{GL}_{n}}.$

Strategy

- Equip $\mathcal{O}(\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell))$ with a canonical basis \mathbf{B}^{\times} .
- Describe $\mathbf{B} := \mathbf{B}^{\times} \cap \mathcal{O}(\operatorname{Conf}_{3}(\widetilde{\mathcal{F}\ell}))$ and show it is a basis for $\mathcal{O}(\operatorname{Conf}_{3}(\widetilde{\mathcal{F}\ell})) = \bigoplus_{\alpha,\beta,\gamma} (V_{\alpha} \otimes V_{\beta} \otimes V_{\gamma})^{\operatorname{GL}_{n}}.$
- Show that elements of **B** are eigenfunctions of $H^{\times 3}$ action, so we get a basis for each summand.

Let (U, Ω) be log CY. A **divisorial discrete valuation** (ddv) $\nu : \mathbb{C}(U) \setminus \{0\} \to \mathbb{Z}$ is a discrete valuation of the form $\nu = \operatorname{ord}_D(\cdot)$ where D is (a positive multiple of) an irreducible effective divisor in a variety birational to U.

Let (U, Ω) be log CY. A **divisorial discrete valuation** (ddv) $\nu : \mathbb{C}(U) \setminus \{0\} \to \mathbb{Z}$ is a discrete valuation of the form $\nu = \operatorname{ord}_D(\cdot)$ where D is (a positive multiple of) an irreducible effective divisor in a variety birational to U. The **integral tropicalization of** U is $U^{\operatorname{trop}}(\mathbb{Z}) := \{\nu \operatorname{ddv} : \nu(\Omega) < 0\} \cup \{0\}.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let (U, Ω) be log CY. A **divisorial discrete valuation** (ddv) $\nu : \mathbb{C}(U) \setminus \{0\} \to \mathbb{Z}$ is a discrete valuation of the form $\nu = \operatorname{ord}_D(\cdot)$ where D is (a positive multiple of) an irreducible effective divisor in a variety birational to U. The **integral tropicalization of** U is $U^{\operatorname{trop}}(\mathbb{Z}) := \{\nu \operatorname{ddv} : \nu(\Omega) < 0\} \cup \{0\}.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Example

If $U = T_N$, $U^{\operatorname{trop}}(\mathbb{Z}) = N$.

Let (U, Ω) be log CY. A **divisorial discrete valuation** (ddv) $\nu : \mathbb{C}(U) \setminus \{0\} \to \mathbb{Z}$ is a discrete valuation of the form $\nu = \operatorname{ord}_D(\cdot)$ where D is (a positive multiple of) an irreducible effective divisor in a variety birational to U. The **integral tropicalization of** U is $U^{\operatorname{trop}}(\mathbb{Z}) := \{\nu \ \operatorname{ddv} : \nu(\Omega) < 0\} \cup \{0\}.$

Example

If $U=T_N,\, U^{\rm trop}(\mathbb{Z})=N.$ Recall that toric divisors are indexed by cocharacters.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Tropicalization of a log Calabi-Yau variety ([GHKK18])

Remark

We can extend scalars from Z_{>0} to R_{>0} in the definition of U^{trop}(Z) to obtain U^{trop}(ℝ) – the real tropicalization of U.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Tropicalization of a log Calabi-Yau variety ([GHKK18])

Remark

We can extend scalars from Z_{>0} to R_{>0} in the definition of U^{trop}(Z) to obtain U^{trop}(ℝ) – the real tropicalization of U.

• $U^{\mathrm{trop}}(\mathbb{R})$ has a natural piecewise linear structure.

Tropicalization of a log Calabi-Yau variety ([GHKK18])

Remark

We can extend scalars from Z_{>0} to R_{>0} in the definition of U^{trop}(Z) to obtain U^{trop}(ℝ) – the real tropicalization of U.

- $U^{\mathrm{trop}}(\mathbb{R})$ has a natural piecewise linear structure.
- When $U = T_N$, $U^{\text{trop}}(\mathbb{R}) = N_{\mathbb{R}}$ is actually linear.

Let U be an affine log Calabi-Yau with $\mathit{maximal}\ \mathit{boundary}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Let U be an affine log Calabi-Yau with maximal boundary – this means it has a minimal model (Y, D) where D has a 0-stratum.

Let U be an affine log Calabi-Yau with *maximal boundary*. Then the mirror U^{\vee} is again an affine log Calabi-Yau with maximal boundary. The integral tropical points of U parametrize a basis of ϑ -functions on U^{\vee} , with multiplication given explicitly in terms of broken line counts.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let U be an affine log Calabi-Yau with *maximal boundary*. Then the mirror U^{\vee} is again an affine log Calabi-Yau with maximal boundary. The integral tropical points of U parametrize a basis of ϑ -functions on U^{\vee} , with multiplication given explicitly in terms of broken line counts.

Cluster case

If U is a cluster variety, this is (a version of) the dual basis conjecture of Fock and Goncharov. ([FG09]) Here, U and U^{\vee} are built out of dual tori.

Let U be an affine log Calabi-Yau with *maximal boundary*. Then the mirror U^{\vee} is again an affine log Calabi-Yau with maximal boundary. The integral tropical points of U parametrize a basis of ϑ -functions on U^{\vee} , with multiplication given explicitly in terms of broken line counts.

Cluster case

If U is a cluster variety, this is (a version of) the dual basis conjecture of Fock and Goncharov. ([FG09]) Here, U and U^{\vee} are built out of dual tori. Conditions implying the conjecture holds for U are given in [GHKK18].

 $(\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}}\!\ell)^{\vee})^{\mathrm{trop}}(\mathbb{Z}) \text{ parametrizes a canonical basis for } \mathcal{O}(\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}}\!\ell)).$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 $(\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell)^{\vee})^{\operatorname{trop}}(\mathbb{Z})$ parametrizes a canonical basis for $\mathcal{O}(\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell))$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Remark

 $(\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell)^{\vee})^{\operatorname{trop}}(\mathbb{Z})$ parametrizes a canonical basis for $\mathcal{O}(\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell))$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Remark

 In the toric analogy, this parametrization is like saying the cocharacters of T[∨] parametrize a canonical basis for O(T).

 $(\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell)^{\vee})^{\operatorname{trop}}(\mathbb{Z})$ parametrizes a canonical basis for $\mathcal{O}(\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell))$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Remark

- In the toric analogy, this parametrization is like saying the cocharacters of T[∨] parametrize a canonical basis for O(T).
- This is the basis $\mathbf{B}^{ imes}$.
Theorem (M.)

 $(\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell)^{\vee})^{\operatorname{trop}}(\mathbb{Z})$ parametrizes a canonical basis for $\mathcal{O}(\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell))$.

Remark

- In the toric analogy, this parametrization is like saying the cocharacters of T[∨] parametrize a canonical basis for O(T).
- This is the basis $\mathbf{B}^{ imes}$.
- The next step is to cut it down to B.

• Let $D_{(a,b,c)} \subset \operatorname{Conf}_3(\widetilde{\mathcal{F}}_\ell)$ be the vanishing locus of $A_{(a,b,c)}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Let
$$D_{(a,b,c)} \subset \operatorname{Conf}_3(\widetilde{\mathcal{F}\ell})$$
 be the vanishing locus of $A_{(a,b,c)}$.
• Set $D = \sum_{\text{Exactly 1 of } a, b, c \text{ is } 0} D_{(a,b,c)}$.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

• Let
$$D_{(a,b,c)} \subset \operatorname{Conf}_3(\widetilde{\mathcal{F}}\ell)$$
 be the vanishing locus of $A_{(a,b,c)}$

- Set $D = \sum_{\text{Exactly 1 of } a, b, c \text{ is } 0} D_{(a,b,c)}.$
- Then $\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell}) = \operatorname{Conf}_3(\widetilde{\mathcal{F}\ell}) \setminus D$, and Ω has a simple pole along each component of D.

• Let
$$D_{(a,b,c)} \subset \operatorname{Conf}_3(\widetilde{\mathcal{F}}\ell)$$
 be the vanishing locus of $A_{(a,b,c)}$

- Set $D = \sum_{\text{Exactly 1 of } a, b, c \text{ is } 0} D_{(a,b,c)}.$
- Then $\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell}) = \operatorname{Conf}_3(\widetilde{\mathcal{F}\ell}) \setminus D$, and Ω has a simple pole along each component of D.
- So each component of D defines a point $\nu_{(a,b,c)}$ of $\operatorname{Conf}_{3}^{\times}(\widetilde{\mathcal{F}}\ell)^{\operatorname{trop}}(\mathbb{Z})$.

• Let
$$D_{(a,b,c)} \subset \operatorname{Conf}_3(\widetilde{\mathcal{F}}\ell)$$
 be the vanishing locus of $A_{(a,b,c)}$

- Set $D = \sum_{\text{Exactly 1 of } a, b, c \text{ is } 0} D_{(a,b,c)}.$
- Then $\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell) = \operatorname{Conf}_3(\widetilde{\mathcal{F}}\ell) \setminus D$, and Ω has a simple pole along each component of D.
- So each component of D defines a point $\nu_{(a,b,c)}$ of $\operatorname{Conf}_{3}^{\times}(\widetilde{\mathcal{F}}\ell)^{\operatorname{trop}}(\mathbb{Z})$.

• $\nu_{(a,b,c)}$ defines a ϑ -function $\vartheta_{(a,b,c)}$ on $\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell)^{\vee}$.

• Let
$$D_{(a,b,c)} \subset \operatorname{Conf}_3(\widetilde{\mathcal{F}}\ell)$$
 be the vanishing locus of $A_{(a,b,c)}$

- Set $D = \sum_{\text{Exactly 1 of } a, b, c \text{ is } 0} D_{(a,b,c)}.$
- Then $\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell) = \operatorname{Conf}_3(\widetilde{\mathcal{F}}\ell) \setminus D$, and Ω has a simple pole along each component of D.
- So each component of D defines a point $\nu_{(a,b,c)}$ of $\operatorname{Conf}_{3}^{\times}(\widetilde{\mathcal{F}}\ell)^{\operatorname{trop}}(\mathbb{Z})$.
- $\nu_{(a,b,c)}$ defines a ϑ -function $\vartheta_{(a,b,c)}$ on $\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell})^{\vee}$.
- The Landau-Ginzburg mirror to $\left(\operatorname{Conf}_{3}(\widetilde{\mathcal{F}\ell}), D\right)$ is $W = \sum_{\text{Exactly 1 of } a, b, c \text{ is } 0} \vartheta_{(a,b,c)} : \operatorname{Conf}_{3}^{\times}(\widetilde{\mathcal{F}\ell})^{\vee} \to \mathbb{C}.$

The tropical pairing

The tropical pairing

• $\operatorname{Conf}_{3}^{\times}(\widetilde{\mathcal{F}})^{\operatorname{trop}}(\mathbb{Z})$ is by definition divisorial discrete valuations on $\mathbb{C}(\operatorname{Conf}_{3}^{\times}(\widetilde{\mathcal{F}})) \setminus \{0\}.$

The tropical pairing

• $\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}}()^{\operatorname{trop}}(\mathbb{Z}))$ is by definition divisorial discrete valuations on $\mathbb{C}(\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}}()) \setminus \{0\}.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

• $(\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell})^{\vee})^{\operatorname{trop}}(\mathbb{Z})$ parametrizes ϑ -functions on $\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell})$.

The tropical pairing

- $\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}}()^{\operatorname{trop}}(\mathbb{Z}))$ is by definition divisorial discrete valuations on $\mathbb{C}(\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}}()) \setminus \{0\}.$
- $(\operatorname{Conf}_{3}^{\times}(\widetilde{\mathcal{F}\ell})^{\vee})^{\operatorname{trop}}(\mathbb{Z})$ parametrizes ϑ -functions on $\operatorname{Conf}_{3}^{\times}(\widetilde{\mathcal{F}\ell})$.
- Restriction of evaluation pairing gives

$$\begin{array}{l} \langle \ \cdot \ , \ \cdot \ \rangle : \mathrm{Conf}_{3}^{\times}(\widetilde{\mathcal{F}}\!\ell)^{\mathrm{trop}}(\mathbb{Z}) \times (\mathrm{Conf}_{3}^{\times}(\widetilde{\mathcal{F}}\!\ell)^{\vee})^{\mathrm{trop}}(\mathbb{Z}) \to \mathbb{Z} \\ (\ \nu \ , \ p \) \qquad \qquad \mapsto \nu(\vartheta_p) \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The tropical pairing

- $\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}}()^{\operatorname{trop}}(\mathbb{Z})$ is by definition divisorial discrete valuations on $\mathbb{C}(\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}}()) \setminus \{0\}.$
- $(\operatorname{Conf}_{3}^{\times}(\widetilde{\mathcal{F}\ell})^{\vee})^{\operatorname{trop}}(\mathbb{Z})$ parametrizes ϑ -functions on $\operatorname{Conf}_{3}^{\times}(\widetilde{\mathcal{F}\ell})$.
- Restriction of evaluation pairing gives

$$\begin{array}{c} \langle \ \cdot \ , \ \cdot \ \rangle : \mathrm{Conf}_{3}^{\times}(\widetilde{\mathcal{F}}\!\ell)^{\mathrm{trop}}(\mathbb{Z}) \times (\mathrm{Conf}_{3}^{\times}(\widetilde{\mathcal{F}}\!\ell)^{\vee})^{\mathrm{trop}}(\mathbb{Z}) \to \mathbb{Z} \\ (\ \nu \ , \ p \) \qquad \qquad \mapsto \nu(\vartheta_p) \end{array}$$

• Swapping $\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell})$ and $\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell})^{\vee}$ gives pairing $\langle \cdot , \cdot \rangle^{\vee}$.

The tropical pairing

- $\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}}()^{\operatorname{trop}}(\mathbb{Z})$ is by definition divisorial discrete valuations on $\mathbb{C}(\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}}()) \setminus \{0\}.$
- $(\operatorname{Conf}_{3}^{\times}(\widetilde{\mathcal{F}\ell})^{\vee})^{\operatorname{trop}}(\mathbb{Z})$ parametrizes ϑ -functions on $\operatorname{Conf}_{3}^{\times}(\widetilde{\mathcal{F}\ell})$.
- Restriction of evaluation pairing gives

$$\begin{array}{c} \langle \ \cdot \ , \ \cdot \ \rangle : \mathrm{Conf}_{3}^{\times}(\widetilde{\mathcal{F}}\!\ell)^{\mathrm{trop}}(\mathbb{Z}) \times (\mathrm{Conf}_{3}^{\times}(\widetilde{\mathcal{F}}\!\ell)^{\vee})^{\mathrm{trop}}(\mathbb{Z}) \to \mathbb{Z} \\ (\ \nu \ , \ p \) \qquad \qquad \mapsto \nu(\vartheta_p) \end{array}$$

- Swapping $\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell})$ and $\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell})^{\vee}$ gives pairing $\langle \cdot , \cdot \rangle^{\vee}$.
- Conjecturally $\langle \nu, p \rangle = \langle \nu, p \rangle^{\vee}$ in general. Equality is known if ϑ_{ν} or ϑ_{p} restricts to a character on some cluster torus.

Theorem (M.)

Every summand $\vartheta_{(a,b,c)}$ of W restricts to a character on some cluster torus. As a result, $p(\vartheta_{(a,b,c)}) = \langle \nu_{(a,b,c)}, p \rangle^{\vee} = \langle \nu_{(a,b,c)}, p \rangle = \nu_{(a,b,c)}(\vartheta_p) - the order of vanishing of <math>\vartheta_p$ along $D_{(a,b,c)}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (M.)

Every summand $\vartheta_{(a,b,c)}$ of W restricts to a character on some cluster torus. As a result, $p(\vartheta_{(a,b,c)}) = \langle \nu_{(a,b,c)}, p \rangle^{\vee} = \langle \nu_{(a,b,c)}, p \rangle = \nu_{(a,b,c)}(\vartheta_p) - the order of vanishing of <math>\vartheta_p$ along $D_{(a,b,c)}$.

Corollary

Define
$$\vartheta_{\nu}^{\mathrm{trop}}(p) = p(\vartheta_{\nu})$$
 and
 $W^{\mathrm{trop}} := \min \vartheta_{(a,b,c)}^{\mathrm{trop}} : (\mathrm{Conf}_{3}^{\times}(\widetilde{\mathcal{F}\ell})^{\vee})^{\mathrm{trop}}(\mathbb{Z}) \to \mathbb{Z}.$
Then $\Xi(\mathbb{Z}) := \left\{ p \in (\mathrm{Conf}_{3}^{\times}(\widetilde{\mathcal{F}\ell})^{\vee})^{\mathrm{trop}}(\mathbb{Z}) \mid W^{\mathrm{trop}}(p) \ge 0 \right\}$ parametrizes
the elements of \mathbf{B}^{\times} that extend to $\mathrm{Conf}_{3}(\widetilde{\mathcal{F}\ell}).$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Remark

Doesn't quite establish that $\Xi(\mathbb{Z})$ parametrizes a basis for $\mathcal{O}(\operatorname{Conf}_3(\widetilde{\mathcal{F}\ell}))$ it would fail, *e.g.* if ϑ_p and ϑ_q have poles on D, but the poles cancel in $\vartheta_p + \vartheta_q$.

Remark

Doesn't quite establish that $\Xi(\mathbb{Z})$ parametrizes a basis for $\mathcal{O}(\operatorname{Conf}_3(\overline{\mathcal{F}\ell}))$ it would fail, e.g. if ϑ_p and ϑ_q have poles on D, but the poles cancel in $\vartheta_p + \vartheta_q$.

Theorem (Gross-Hacking-Keel-Kontsevich)

Suppose ϑ_{ν} restricts to a character on some cluster torus. If $\nu(\sum_{p} c_{p} \vartheta_{p}) \geq 0$, then $\nu(\vartheta_{p}) \geq 0$ for all p with $c_{p} \neq 0$.

Remark

Doesn't quite establish that $\Xi(\mathbb{Z})$ parametrizes a basis for $\mathcal{O}(\operatorname{Conf}_3(\overline{\mathcal{F}\ell}))$ it would fail, e.g. if ϑ_p and ϑ_q have poles on D, but the poles cancel in $\vartheta_p + \vartheta_q$.

Theorem (Gross-Hacking-Keel-Kontsevich)

Suppose ϑ_{ν} restricts to a character on some cluster torus. If $\nu(\sum_{p} c_{p} \vartheta_{p}) \geq 0$, then $\nu(\vartheta_{p}) \geq 0$ for all p with $c_{p} \neq 0$.

Corollary

 $\Xi(\mathbb{Z})$ parametrizes a basis **B** for $\mathcal{O}(\operatorname{Conf}_3(\widetilde{\mathcal{F}\ell}))$.

ϑ -functions are eigenfunctions of $H^{ imes 3}$ action

• B only depends on inclusion $\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell) \subset \operatorname{Conf}_3(\widetilde{\mathcal{F}}\ell)$.

ϑ -functions are eigenfunctions of $H^{\times 3}$ action

• B only depends on inclusion $\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell) \subset \operatorname{Conf}_3(\widetilde{\mathcal{F}}\ell)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• $H^{\times 3}$ action preserves this action.

ϑ -functions are eigenfunctions of $H^{ imes 3}$ action

- B only depends on inclusion $\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell) \subset \operatorname{Conf}_3(\widetilde{\mathcal{F}}\ell)$.
- $H^{\times 3}$ action preserves this action.
- $H^{\times 3}$ action must preserve **B** the elements of **B** are $H^{\times 3}$ -eigenfunctions.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

ϑ -functions are eigenfunctions of $H^{ imes 3}$ action

- B only depends on inclusion $\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell) \subset \operatorname{Conf}_3(\widetilde{\mathcal{F}}\ell)$.
- $H^{\times 3}$ action preserves this action.
- $H^{\times 3}$ action must preserve **B** the elements of **B** are $H^{\times 3}$ -eigenfunctions.

Moreover:

Theorem (M.)

There is a map $\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell)^{\vee} \to (H^{\times 3})^{\vee}$ whose tropicalization w satisfies:

$$w: \left(\operatorname{Conf}_{3}^{\times}(\widetilde{\mathcal{F}\ell})^{\vee}\right)^{\operatorname{trop}}(\mathbb{Z}) \to \mathbb{Z}$$
$$q \mapsto H^{\times 3} - \text{weight of } \vartheta_{q}.$$

Then $P_{\alpha,\beta,\gamma}(\mathbb{Z}) := w^{-1} (-w_0(\alpha), -w_0(\beta) - w_0(\gamma)) \cap \Xi(\mathbb{Z})$ parametrizes a basis for $(V_\alpha \otimes V_\beta \otimes V_\gamma)^{\operatorname{GL}_n}$.

• Ξ and $P_{\alpha,\beta,\gamma}$ are subsets of the piecewise linear manifold $(\operatorname{Conf}_{3}^{\times}(\widetilde{\mathcal{F}\ell})^{\vee})^{\operatorname{trop}}(\mathbb{R}).$

- Ξ and $P_{\alpha,\beta,\gamma}$ are subsets of the piecewise linear manifold $(\operatorname{Conf}_{3}^{\times}(\widetilde{\mathcal{F}\ell})^{\vee})^{\operatorname{trop}}(\mathbb{R}).$
- Each cluster torus T_M in $\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell})^{\vee}$ gives identification of $(\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell})^{\vee})^{\operatorname{trop}}(\mathbb{R})$ with $M_{\mathbb{R}}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Ξ and $P_{\alpha,\beta,\gamma}$ are subsets of the piecewise linear manifold $(\operatorname{Conf}_{3}^{\times}(\widetilde{\mathcal{F}\ell})^{\vee})^{\operatorname{trop}}(\mathbb{R}).$
- Each cluster torus T_M in $\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell})^{\vee}$ gives identification of $(\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell})^{\vee})^{\operatorname{trop}}(\mathbb{R})$ with $M_{\mathbb{R}}$.

• This identifies Ξ with a cone and $P_{\alpha,\beta,\gamma}$ with a polytope.

- Ξ and P_{α,β,γ} are subsets of the piecewise linear manifold (Conf[×]₃ (*H*)[∨])^{trop}(ℝ).
- Each cluster torus T_M in $\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell})^{\vee}$ gives identification of $(\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell})^{\vee})^{\operatorname{trop}}(\mathbb{R})$ with $M_{\mathbb{R}}$.
- This identifies Ξ with a cone and $P_{\alpha,\beta,\gamma}$ with a polytope.

$\overline{P}_{\alpha,\beta,\gamma}$ for initial cluster torus

Entries on indicated side of line sum to the given value

・ロト・日本・日本・日本・日本・日本

Goncharov-Shen Potential

• Goncharov and Shen define a potential on $\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell)$ (rather than its mirror).

- Goncharov and Shen define a potential on $\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell)$ (rather than its mirror).
- Points in $\widetilde{\mathcal{F}\!\ell}$ given as pairs (U,χ) where

- Goncharov and Shen define a potential on $\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell)$ (rather than its mirror).
- Points in $\widetilde{\mathcal{F}\!\ell}$ given as pairs (U,χ) where
 - $U \subset \operatorname{GL}_n$ is a maximal unipotent subgroup,

- Goncharov and Shen define a potential on $\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell)$ (rather than its mirror).
- Points in $\widetilde{\mathcal{F}\!\ell}$ given as pairs (U,χ) where
 - $U \subset \operatorname{GL}_n$ is a maximal unipotent subgroup,
 - χ : U → C_a is a non-degenerate additive character– the stabilizer of (U, χ) under conjugation is precisely U.

- Goncharov and Shen define a potential on $\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell)$ (rather than its mirror).
- Points in $\widetilde{\mathcal{F}\!\ell}$ given as pairs (U,χ) where
 - $U \subset \operatorname{GL}_n$ is a maximal unipotent subgroup,
 - $\chi: U \to \mathbb{C}_a$ is a **non-degenerate** additive character– the stabilizer of (U, χ) under conjugation is precisely U.
- For $((U_1, \chi_1), (U_2, \chi_2), (U_3, \chi_3)) \in \operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell)$, there is a unique $u_{jk} \in U_i$ conjugating U_j to U_k .

- Goncharov and Shen define a potential on $\operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell)$ (rather than its mirror).
- Points in $\widetilde{\mathcal{F}\!\ell}$ given as pairs (U,χ) where
 - $U \subset \operatorname{GL}_n$ is a maximal unipotent subgroup,
 - $\chi: U \to \mathbb{C}_a$ is a **non-degenerate** additive character– the stabilizer of (U, χ) under conjugation is precisely U.
- For $((U_1, \chi_1), (U_2, \chi_2), (U_3, \chi_3)) \in \operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell)$, there is a unique $u_{jk} \in U_i$ conjugating U_j to U_k .
- Results in natural function on $\mathrm{Conf}_3^\times(\widetilde{\mathcal{F}}\!\ell)$:

$$\mathcal{W}_{\mathsf{GS}} : \operatorname{Conf}_{3}^{\times}(\widetilde{\mathcal{F}\ell}) \to \mathbb{C}$$

((U₁, \chi_1), (U₂, \chi_2), (U_3, \chi_3)) \mapsto \chi_1(u_{23}) + \chi_2(u_{31}) + \chi_3(u_{12})

Theorem (Goncharov-Shen)

For the initial cluster torus

$$\left\{\nu \in \operatorname{Conf}_{3}^{\times}(\widetilde{\mathcal{F}\ell})^{\operatorname{trop}}(\mathbb{R}) \mid \mathcal{W}_{GS}^{\operatorname{trop}}(\nu) \geq 0\right\}$$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

is precisely the Knutson-Tao hive cone.

Theorem (Goncharov-Shen)

For the initial cluster torus

$$\left\{\nu \in \operatorname{Conf}_{3}^{\times}(\widetilde{\mathcal{F}\ell})^{\operatorname{trop}}(\mathbb{R}) \mid \mathcal{W}_{GS}^{\operatorname{trop}}(\nu) \geq 0\right\}$$

is precisely the Knutson-Tao hive cone.

Theorem (M.)

There is an isomorphism $p: \operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell}) \to \operatorname{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell})^{\vee}$ with $p^*(W) = \mathcal{W}_{GS}$. For the initial cluster tori, this identifies Ξ with the Knutson-Tao hive cone.

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙
Computing $c^{(3,2,1)}_{(2,1,0),(2,1,0)} = \dim \left(V_{(2,1,0)} \otimes V_{(2,1,0)} \otimes V_{(-1,-2,-3)} \right)^{\operatorname{GL}_3}$

Example $(c_{(2,1,0),(2,1,0)}^{(3,2,1)} = 2)$

≣ ୬९୯

-2

ъ

Example $(c_{(2,1,0),(2,1,0)}^{(3,2,1)} = 2)$

Example $(c^{(3,2,1)}_{(2,1,0),(2,1,0)}=2$)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Example $(c_{(2,1,0),(2,1,0)}^{(3,2,1)} = 2)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

References

- [FG06] V. Fock and A. Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Inst. Hautes Etudes Sci. Publ. Math. 103(1), 1–211 (2006).
- [FG09] V. Fock and A. Goncharov, Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Ecole Norm. Sup. 42(6), 865–930 (2009).
- [GHK15] M. Gross, P. Hacking and S. Keel, *Birational geometry of cluster algebras*, Algebraic Geometry **2**(2), 137–175 (May 2015).
- [GHKK18] M. Gross, P. Hacking, S. Keel and M. Kontsevich, Canonical bases for cluster algebras, J. Amer. Math. Soc. 31(2), 497–608 (2018).
 - [GS15] A. Goncharov and L. Shen, Geometry of canonical bases and mirror symmetry, Invent. Math. 202(2), 487–633 (2015).
 - [KT98] A. Knutson and T. Tao, Apiary views of the Berenstein-Zelevinsky polytope, and Klyachko's saturation conjecture, (1998), arXiv:math/9807160v1 [math.RT].