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How do we compute the Littlewood-Richardson coefficients cz [3?
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@ Representation theory set-up: Which space should we study?

@ Log Calabi-Yau mirror symmetry background and solution
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@ Lots of cones, intrinsic “cone”
@ Canonical Bases

@ Very general construction
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Knutson-Tao Hive Cone ([KT98])

Alternative Formulation of Littlewood-Richardson coefficients

Given three irreducible GL,, representations V,,, V3, V,, what is the
dimension of (V, @ V3 ® V)2
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@ Impose rhombus inequalities.

Y ° N y+z>zr+w

[ ]
I3




Knutson-Tao Hive Cone ([KT98])

o Start with # = {(a, be) € (Zso)® ‘ at+b+ec= n} Take real
labelings R*.

@ Impose rhombus inequalities.

o Take quotient by linear subspace spanned by 1.

Y . Result is the Knutson-Tao hive cone.

\ / \ Its points are called hives.




Knutson-Tao Hive Cone ([KT98])

To compute dim (V, ® V3 ® V, )Gl
o Fill the border as shown.
T(4,0,0)
Y4 = X(4,0,0) — L(3,0,1 / Q1 = 2(3,1,0) — £(4,0,0)
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V2 = T(2,0,2) ~ %(1,0,3) ) Q3 = T(1,3,0) ~ 2(2,2,0)
P /«’L'(l,o,:s) ° ° (1,3,0)
Y Q4 = T(0,4,0) — T(1,3,0)
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Knutson-Tao Hive Cone ([KT98])

GLn.

To compute dim (V, ® V3 ® V)
@ Fill the border as shown.
@ Count integral hives with this border.

L (4,0,0)
Y4 = X(4,0,0) — L(3,0,1 / Q1 = 2(3,1,0) — £(4,0,0)
p '90(3,0,1) T(3,1,0)
g T(3,0,1) — w:.u.z‘/‘/ Qa2 = T(2,2,0) — *(3,1,0)
' (2,0,2) ° T(2,2,0)
V2 = %(2,0,2) — T(1,0,3 / Q3 = T(1,3,0) ~ 2(2,2,0)
' L(1,0,3) ° ° (1,3,0)

Q4 = T(0,4,0) ~ T(1,3,0)
Z(0,04) T(0,1,3) T(022) T(031) T(04,0)
~— ~— ~— ~—

A\ N N N
% % % %
% £ % %y
£ 7 7 52
N N AN AN
% % % %
2, 2, 2, 2,
Y 2 < Z



The Set-up

Petr-Weyl Theorem
Let G be a reductive group. As G x G bimodules

OG) =PV Vy
A

where the sum is over isomorphism classes of irreducible rational
representations of G.
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Consequence for G = GL,
O( l><U <@V)\ ® V)\)

where U consists of upper triangular matrices with all diagonal entries 1.
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where u) is the highest weight vector of Vy'.
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Consequence for G = GL,,

O(GLn /U) = @ Vi

A

This is a weight space decomposition for right action of maximal torus,
with V) the —wp(A) weight space.

Conf3(GL,, /U)
Interested in the spaces (V, ® V3 ® V) SLn.

w
—~
.

O (GLy \(GLy /U)?) = (P Va & Va® V) o

a,Byy

Conf3(GL, /U) := GL, \(GL,, /U)*? defined and studied in [FGO06],
[GS15).
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Cluster Varieties: Context and Definition ([GHK15])

Definition (Log Calabi-Yau variety)

A smooth complex variety U with a unique volume form 2 having at worst
a simple pole along any divisor in any compactification of U

Example

Algebraic torus T = (C*)", Q = dzl A A dz"
Fact: If (Y, D) is any toric varlety W|th its torlc boundary divisor, then (2
has a simple pole along each component of D.

| N\
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Cluster Varieties: Context and Definition ([GHK15])

Example (Carefully glued tori)
U=J7/ ~

(]
pij 2 T - Ty, gy () =

§

Example (Blow-up of toric variety)

o (Y, D) toric variety

® H C D codim 1 locus of boundary
(codim 2in Y)

o (Y, D) blow-up of Y along H, together
with strict transform of D

o U:=Y\Dislog CY

N,

Two ways of describing a Cluster Variety
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Cluster Structure of Conf3(F¢) ([FG06], [GS15])

Decorated flags

@ Let a decorated flag be a complete flag X, = (X7 C -+ C X,,),
together with a non-zero vector z; € X;/X;_; in each successive
quotient.

@ The decorated flag variety F parametrizes these, and is isomorphic
to GL,, /U.

° Confg(ﬁ) parametrizes triples of decorated flags, defined up to
diagonal GL,, action.

o (X,,Y,) is in generic position if X; and Y,,_; intersect transversely
for all 7.

o Conf] (ﬁ) C Confg(]-f:z) is the locus where triples of decorated flags
(X,Y,Z) := ((Xe, %), (Ye,Ye), (Ze, zs)) are in generic configuration,
meaning each pair of flags is in generic position.
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@ Take V =2 C", and choose volume form w € A"V™*,

o Define Aiypo) 1 (X,Y,Z) = w(T1,- - Tay Y155 Ubs 215+ - 5 Zc)-
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A1,0,0)

Azon Ao

N/

A202)<— L1 <—A(220

NN

A(103)<— ) Ao <—A(13,0)

AWAN

Ao Apzy Aoz Aoy Ao
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o Initial cluster and quiver for a torus in SL,, \ F¥
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A(1,0,0)

Azon Ao
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—~— X
o Initial cluster and quiver for a torus in SL,, \ F¥
o Note that A, ) respects the quotient by SL,,.



Cluster Structure of Conf(F?) ([FGO6], [GS15])

A(1,0,0)

Azon Ao

N/

A202)% L2,1,1) %A(zzo
Aoz« A = Ao < Aaso)
Ao Apzy Aoz Aoy Ao

o Initial cluster and quiver for a torus in SL,, \.ﬁ
o Note that A, ) respects the quotient by SL,,.
° H AZLE;;:C)) is fixed by GL,, if and only if Z T(ab,e) = 0.
a+b+c=n a+b+c=n
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Cox type constuction

Like (C*)>(M) Like C>M\ Z(%) T contairny = H
1c(Confgz(FE

4 N < N/)
Conf} (F¥) — Conf3(F)

| l

Conf3 (F¢) —— Conf3(Fr)
A LN

Like defining torus T' Like X5

e Equip O(Conf] (F¥)) with a canonical basis B*.

@ Describe B :=B* N (’)(Confg(ﬁ)) and show it is a basis for
O(Confs(F0)) = D, 5., (Va ® Vs ® V3) .

@ Show that elements of B are eigenfunctions of H*? action, so we get
a basis for each summand. )




Tropicalization of a log Calabi-Yau ([GHKK18])

Definition

Let (U, 2) be log CY. A divisorial discrete valuation (ddv)
v:C(U)\ {0} — Z is a discrete valuation of the form v = ordp( - )
where D is (a positive multiple of) an irreducible effective divisor in a
variety birational to U.
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Tropicalization of a log Calabi-Yau ([GHKK18])

Definition

Let (U, 2) be log CY. A divisorial discrete valuation (ddv)
v:C(U)\ {0} — Z is a discrete valuation of the form v = ordp( - )
where D is (a positive multiple of) an irreducible effective divisor in a
variety birational to U. The integral tropicalization of U is
U'°P(Z) := {v ddv : v(Q) < 0} U {0}.

Example

If U = Ty, U™P(Z) = N. Recall that toric divisors are indexed by
cocharacters.

| A\

A,
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Tropicalization of a log Calabi-Yau variety ([GHKK18])

@ We can extend scalars from Z~g to R+ in the definition of U'°P(Z)
to obtain U™ P(RR) — the real tropicalization of U.

e U'°P(R) has a natural piecewise linear structure.
e When U = Ty, U"P(R) = Ny is actually linear.
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Conjecture of Gross-Hacking-Keel

Let U be an affine log Calabi-Yau with maximal boundary — this means it
has a minimal model (Y, D) where D has a O-stratum.
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Dual Basis Conjectures

Conjecture of Gross-Hacking-Keel

Let U be an affine log Calabi-Yau with maximal boundary. Then the
mirror U" is again an affine log Calabi-Yau with maximal boundary. The
integral tropical points of U parametrize a basis of ¥-functions on UV,
with multiplication given explicitly in terms of broken line counts.

If U is a cluster variety, this is (a version of) the dual basis conjecture of
Fock and Goncharov. ([FG09]) Here, U and U" are built out of dual tori.
Conditions implying the conjecture holds for U are given in [GHKK18].
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Dual Basis Conjectures

(Cont} (F7)V)TP(Z) parametrizes a canonical basis for O(Cont} (F7)).

@ In the toric analogy, this parametrization is like saying the
cocharacters of TV parametrize a canonical basis for O(T).

@ This is the basis B*.

@ The next step is to cut it down to B.
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Landau-Ginzburg Potential and the basis B

o Let Digpo) C Confg(ﬁ) be the vanishing locus of A, ).
@ Set D= Z D(a,b,c)-

Exactly 1 of a,b,cis 0
Then Conf} (ﬁ) = COHfg(ﬁ) \ D, and Q has a simple pole along
each component of D.
@ So each component of D defines a point v, ) of Confs (ﬁ)tmp(Z).

V(ab,c) defines a ¥-function ¥, .y on Confy (FO)V.
The Landau-Ginzburg mirror to (Confg(.ﬁ),D) is

W= > D(ape) : Conf (F)Y — C.
Exactly 1 of a,b,cis 0
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Landau-Ginzburg Potential and the basis B

The tropical pairing

e Confy (.ﬁ)tmp(Z) is by definition divisorial discrete valuations on

C(Conf3 (F¥)) \ {0}.
o (Conf} (Ft)V)™™P(Z) parametrizes 9-functions on Conf} (F¥).
@ Restriction of evaluation pairing gives

(-, -): ConfX (F)™P(Z) x (Conf} (F0)V)"P(Z) — Z
(v,p) = v(Up)

o Swapping ConfJ (F7) and Cont} (F7)¥ gives pairing ( - , - )V.
o Conjecturally (v,p) = (v, p)” in general. Equality is known if ¥, or ¥,
restricts to a character on some cluster torus.

v




Landau-Ginzburg Potential and the basis B
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the order of vanishing of ¥, along D4y ).




Landau-Ginzburg Potential and the basis B

Every summand ¥y, ) of W restricts to a character on some cluster

torus. As a result, p(ﬂ(a,b,c)) = <V(a,b,c)7p>v = <V(a,b,c)7p> = V(a,b,c) (0P)_
the order of vanishing of 9, along D4y ).

Corollary
Define 95 (p) = p(1,,) and

WP = ming(iP  : (Conf (F0)¥)"°P(Z) — Z.

Then E(Z) = {p € (Conf} (F¥)V)tror(Z) ’ WHoP (p) > O} parametrizes
the elements of B that extend to Confs(F0).
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Doesn't quite establish that Z(Z) parametrizes a basis for O(Confg(ﬁ))—
it would fail, e.g. if ¥, and ¥, have poles on D, but the poles cancel in
Vp + V.
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it would fail, e.g. if ¥, and ¥, have poles on D, but the poles cancel in
Vp + V.

Theorem (Gross-Hacking-Keel-Kontsevich)

Suppose 9, restricts to a character on some cluster torus. If
v(>_, cpp) > 0, then v(dp) > 0 for all p with ¢, # 0.




Landau-Ginzburg Potential and the basis B

Remark

Doesn't quite establish that Z(Z) parametrizes a basis for (’)(Confg(ﬁ))—
it would fail, e.g. if ¥, and ¥, have poles on D, but the poles cancel in
Vp + V.

Theorem (Gross-Hacking-Keel-Kontsevich)

Suppose 9, restricts to a character on some cluster torus. If
v(>_, cpp) > 0, then v(dp) > 0 for all p with ¢, # 0.

=(Z) parametrizes a basis B for (’)(Confg(ﬁ)).
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J-functions are eigenfunctions of H*3 action

e B only depends on inclusion Confy (F¥) C Confs(F0).
e H*3 action preserves this action.

e H*3 action must preserve B— the elements of B are
H *3-eigenfunctions.

Moreover:

Theorem (M.)

There is a map Conf (F{)¥ — (H*®)V whose tropicalization w satisfies:

tr

w : (Conf?f (ﬁ)v> °’ (Z)—>Z
q+— H*® — weight of ¥,.

Then Py (Z) :=w™t (—wo(e), —wo(B) — wo(7)) N E(Z) parametrizes a
basis for (Vo @ Vg ® V) C0n.

v
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Explicit description of = and P, g,

@ = and P%ﬁﬁ are subsets of the piecewise linear manifold
(Conf (F¢)V)™P(R).

o Each cluster torus Ty in Confy (F¥)V gives identification of
(Conf (F¢)V)™P(R) with Mg.

@ This identifies = with a cone and P, g with a polytope.

= for initial cluster torus

x>0

z A z+y>0

/\ z+y+22>0




, for initial cluster torus

X
> O 7&1
. .‘l**“?
Entries on indicated side of
— - D
® b .’[‘ 3 line sum to the given value
oo
v
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Connection to [GS15] and the Knutson-Tao Hive Cone

Goncharov-Shen Potential

@ Goncharov and Shen define a potential on Conf3 (.ﬁ) (rather than its
mirror).

@ Points in F¥ given as pairs (U, x) where
e U C GL, is a maximal unipotent subgroup,
o x : U — C, is a non-degenerate additive character— the stabilizer of
(U, x) under conjugation is precisely U.

e For (U1, x1), (U2, x2), (Us, x3)) € Conf] (F¥), there is a unique
ujk, € U; conjugating U; to Uy.

@ Results in natural function on Conf? (F):

Wes : Conf] (Ft) = C
((U1,x1), (U2, x2), (U3, x3)) = x1(u23) + x2(u31) + x3(u12)




Connection to [GS15] and the Knutson-Tao Hive Cone

Theorem (Goncharov-Shen)

For the initial cluster torus

{v € Cont} (F)"? (R) ( WEPw) 20}

is precisely the Knutson-Tao hive cone.




Connection to [GS15] and the Knutson-Tao Hive Cone

Theorem (Goncharov-Shen)

For the initial cluster torus
{v € Confy (FO)"P(R) | W) >0}

is precisely the Knutson-Tao hive cone.

Theorem (M.)

There is an isomorphism p : Conf; (Ft) — Confy (F0)V with
p (W) = Woes. For the initial cluster tori, this identifies = with the
Knutson-Tao hive cone.

\



Connection to [GS15] and the Knutson-Tao Hive Cone

Identifying the cones pictorially




1) )GL3

. (3,2, . .
Computing cé2,1,0'),(2,1,0) = dim (Vi2,1,0) ® Viz,1,0)® V(129
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