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Start with H =
{
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Result is the Knutson-Tao hive cone.

Its points are called hives.



Knutson-Tao Hive Cone ([KT98])

Start with H =
{

(a, b, c) ∈ (Z≥0)3
∣∣∣ a+ b+ c = n

}
. Take real

labelings RH.

Impose rhombus inequalities.

Take quotient by linear subspace spanned by 1H.

c
=

4
c

=
3

c
=

2
c

=
1

c
=

0

a = 4

a = 3

a = 2

a = 1

a = 0

b
=

4

b
=

3

b
=

2

b
=

1

b
=

0

x

z w

y H for n = 4 y + z ≥ x+ w
Result is the Knutson-Tao hive cone.

Its points are called hives.



Knutson-Tao Hive Cone ([KT98])

Start with H =
{

(a, b, c) ∈ (Z≥0)3
∣∣∣ a+ b+ c = n

}
. Take real

labelings RH.

Impose rhombus inequalities.

Take quotient by linear subspace spanned by 1H.

c
=

4
c

=
3

c
=

2
c

=
1

c
=

0

a = 4

a = 3

a = 2

a = 1

a = 0

b
=

4

b
=

3

b
=

2

b
=

1

b
=

0

x

z w

y H for n = 4y + z ≥ x+ w
Result is the Knutson-Tao hive cone.

Its points are called hives.



Knutson-Tao Hive Cone ([KT98])

To compute dim (Vα ⊗ Vβ ⊗ Vγ)GLn :

Fill the border as shown.

Count integral hives with this border.
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The Set-up

Petr-Weyl Theorem

Let G be a reductive group. As G×G bimodules

O(G) =
⊕
λ

Vλ ⊗ V ∗λ

where the sum is over isomorphism classes of irreducible rational
representations of G.
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Interested in the spaces (Vα ⊗ Vβ ⊗ Vγ)GLn .

O (GLn /U) =
⊕
α

Vα

Conf3(GLn /U) := GLn \(GLn /U)×3 defined and studied in [FG06],
[GS15].
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Cluster Varieties: Context and Definition ([GHK15])

Definition (Log Calabi-Yau variety)

A smooth complex variety U with a unique volume form Ω having at worst
a simple pole along any divisor in any compactification of U

Example

Algebraic torus T = (C∗)n, Ω = dz1
z1
∧ · · · ∧ dzn

zn
Fact: If (Y,D) is any toric variety with its toric boundary divisor, then Ω
has a simple pole along each component of D.
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Cluster Structure of Conf3(F̃`) ([FG06], [GS15])

Decorated flags

Let a decorated flag be a complete flag X• = (X1 ⊂ · · · ⊂ Xn),
together with a non-zero vector xi ∈ Xi/Xi−1 in each successive
quotient.

The decorated flag variety F̃` parametrizes these, and is isomorphic
to GLn /U .

Conf3(F̃`) parametrizes triples of decorated flags, defined up to
diagonal GLn action.

(X•, Y•) is in generic position if Xi and Yn−i intersect transversely
for all i.

Conf×3 (F̃`) ⊂ Conf3(F̃`) is the locus where triples of decorated flags
(X,Y, Z) := ((X•, x•), (Y•, y•), (Z•, z•)) are in generic configuration,
meaning each pair of flags is in generic position.
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Cluster Structure of Conf3(F̃`) ([FG06], [GS15])

Take V ∼= Cn, and choose volume form ω ∈ ∧nV ∗.

Define A(a,b,c) : (X,Y, Z) 7→ ω(x1, . . . , xa, y1, . . . , yb, z1, . . . , zc).

A(0,0,4) A(0,4,0)
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Initial cluster and quiver for a torus in SLn \ F̃`
×3

.

Note that A(a,b,c) respects the quotient by SLn.

∏
a+b+c=n

A
r(a,b,c)
(a,b,c) is fixed by GLn if and only if

∑
a+b+c=n

r(a,b,c) = 0.
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Cox type constuction

Conf×3 (F`) Conf3(F`)

Conf×3 (F̃`) Conf3(F̃`)

T∨Pic(Conf3(F`)) = H×3

Like XΣ

Like CΣ(1) \ Z(Σ)Like (C∗)Σ(1)

Like defining torus T

Strategy

Equip O(Conf×3 (F̃`)) with a canonical basis B×.

Describe B := B× ∩ O(Conf3(F̃`)) and show it is a basis for

O(Conf3(F̃`)) =
⊕

α,β,γ (Vα ⊗ Vβ ⊗ Vγ)GLn .

Show that elements of B are eigenfunctions of H×3 action, so we get
a basis for each summand.
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Tropicalization of a log Calabi-Yau ([GHKK18])

Definition

Let (U,Ω) be log CY. A divisorial discrete valuation (ddv)
ν : C(U) \ {0} → Z is a discrete valuation of the form ν = ordD( · )
where D is (a positive multiple of) an irreducible effective divisor in a
variety birational to U .

The integral tropicalization of U is
U trop(Z) := {ν ddv : ν(Ω) < 0} ∪ {0}.

Example

If U = TN , U trop(Z) = N .

Recall that toric divisors are indexed by
cocharacters.
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Tropicalization of a log Calabi-Yau variety ([GHKK18])

Remark

We can extend scalars from Z>0 to R>0 in the definition of U trop(Z)
to obtain U trop(R) – the real tropicalization of U .

U trop(R) has a natural piecewise linear structure.

When U = TN , U trop(R) = NR is actually linear.
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Dual Basis Conjectures

Conjecture of Gross-Hacking-Keel

Let U be an affine log Calabi-Yau with maximal boundary

. Then the
mirror U∨ is again an affine log Calabi-Yau with maximal boundary. The
integral tropical points of U parametrize a basis of ϑ-functions on U∨,
with multiplication given explicitly in terms of broken line counts.

Cluster case

If U is a cluster variety, this is (a version of) the dual basis conjecture of
Fock and Goncharov. ([FG09]) Here, U and U∨ are built out of dual tori.

Conditions implying the conjecture holds for U are given in [GHKK18].
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Dual Basis Conjectures

Theorem (M.)

(Conf×3 (F̃`)∨)trop(Z) parametrizes a canonical basis for O(Conf×3 (F̃`)).

Remark

In the toric analogy, this parametrization is like saying the
cocharacters of T∨ parametrize a canonical basis for O(T ).

This is the basis B×.

The next step is to cut it down to B.
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Landau-Ginzburg Potential and the basis B

Let D(a,b,c) ⊂ Conf3(F̃`) be the vanishing locus of A(a,b,c).

Set D =
∑

Exactly 1 of a, b, c is 0

D(a,b,c).

Then Conf×3 (F̃`) = Conf3(F̃`) \D, and Ω has a simple pole along
each component of D.

So each component of D defines a point ν(a,b,c) of Conf×3 (F̃`)trop(Z).

ν(a,b,c) defines a ϑ-function ϑ(a,b,c) on Conf×3 (F̃`)∨.

The Landau-Ginzburg mirror to
(

Conf3(F̃`), D
)

is

W =
∑

Exactly 1 of a, b, c is 0

ϑ(a,b,c) : Conf×3 (F̃`)∨ → C.
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Landau-Ginzburg Potential and the basis B

The tropical pairing

Conf×3 (F̃`)trop(Z) is by definition divisorial discrete valuations on

C(Conf×3 (F̃`)) \ {0}.
(Conf×3 (F̃`)∨)trop(Z) parametrizes ϑ-functions on Conf×3 (F̃`).

Restriction of evaluation pairing gives

〈 · , · 〉 : Conf×3 (F̃`)trop(Z)× (Conf×3 (F̃`)∨)trop(Z)→ Z
( ν , p ) 7→ ν(ϑp)

Swapping Conf×3 (F̃`) and Conf×3 (F̃`)∨ gives pairing 〈 · , · 〉∨.

Conjecturally 〈ν, p〉 = 〈ν, p〉∨ in general. Equality is known if ϑν or ϑp
restricts to a character on some cluster torus.
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Landau-Ginzburg Potential and the basis B

Theorem (M.)

Every summand ϑ(a,b,c) of W restricts to a character on some cluster
torus. As a result, p(ϑ(a,b,c)) = 〈ν(a,b,c), p〉∨ = 〈ν(a,b,c), p〉 = ν(a,b,c)(ϑp)–
the order of vanishing of ϑp along D(a,b,c).

Corollary

Define ϑtrop
ν (p) = p(ϑν) and

W trop := minϑtrop
(a,b,c)

: (Conf×3 (F̃`)∨)trop(Z)→ Z.

Then Ξ(Z) :=
{
p ∈ (Conf×3 (F̃`)∨)trop(Z)

∣∣∣ W trop(p) ≥ 0
}

parametrizes

the elements of B× that extend to Conf3(F̃`).
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Landau-Ginzburg Potential and the basis B

Remark

Doesn’t quite establish that Ξ(Z) parametrizes a basis for O(Conf3(F̃`))–
it would fail, e.g. if ϑp and ϑq have poles on D, but the poles cancel in
ϑp + ϑq.

Theorem (Gross-Hacking-Keel-Kontsevich)

Suppose ϑν restricts to a character on some cluster torus. If
ν(
∑

p cpϑp) ≥ 0, then ν(ϑp) ≥ 0 for all p with cp 6= 0.

Corollary

Ξ(Z) parametrizes a basis B for O(Conf3(F̃`)).
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ϑ-functions are eigenfunctions of H×3 action

B only depends on inclusion Conf×3 (F̃`) ⊂ Conf3(F̃`).

H×3 action preserves this action.

H×3 action must preserve B– the elements of B are
H×3-eigenfunctions.

Moreover:

Theorem (M.)

There is a map Conf×3 (F̃`)∨ → (H×3)∨ whose tropicalization w satisfies:

w :
(

Conf×3 (F̃`)∨
)trop

(Z)→ Z

q 7→ H×3 − weight of ϑq.

Then Pα,β,γ(Z) := w−1 (−w0(α),−w0(β)− w0(γ)) ∩ Ξ(Z) parametrizes a

basis for (Vα ⊗ Vβ ⊗ Vγ)GLn .
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Explicit description of Ξ and Pα,β,γ

Ξ and Pα,β,γ are subsets of the piecewise linear manifold

(Conf×3 (F̃`)∨)trop(R).

Each cluster torus TM in Conf×3 (F̃`)∨ gives identification of

(Conf×3 (F̃`)∨)trop(R) with MR.

This identifies Ξ with a cone and Pα,β,γ with a polytope.

Ξ for initial cluster torus

x

y

z  
x ≥ 0

x+ y ≥ 0

x+ y + z ≥ 0
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Explicit description of Ξ and Pα,β,γ

Pα,β,γ for initial cluster torus

Z Y

X

−
γ

1

−
γ

2

−
γ

3

−
γ

4

−α1

−α2

−α3

−α4

−β
1

−β
2

−β
3

−β
4

 Entries on indicated side of
line sum to the given value



Connection to [GS15] and the Knutson-Tao Hive Cone

Goncharov-Shen Potential

Goncharov and Shen define a potential on Conf×3 (F̃`) (rather than its
mirror).

Points in F̃` given as pairs (U, χ) where

U ⊂ GLn is a maximal unipotent subgroup,
χ : U → Ca is a non-degenerate additive character– the stabilizer of
(U, χ) under conjugation is precisely U .

For ((U1, χ1), (U2, χ2), (U3, χ3)) ∈ Conf×3 (F̃`), there is a unique
ujk ∈ Ui conjugating Uj to Uk.

Results in natural function on Conf×3 (F̃`):

WGS : Conf×3 (F̃`)→ C
((U1, χ1), (U2, χ2), (U3, χ3)) 7→ χ1(u23) + χ2(u31) + χ3(u12)
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Connection to [GS15] and the Knutson-Tao Hive Cone

Theorem (Goncharov-Shen)

For the initial cluster torus{
ν ∈ Conf×3 (F̃`)trop(R)

∣∣∣ Wtrop
GS (ν) ≥ 0

}
is precisely the Knutson-Tao hive cone.

Theorem (M.)

There is an isomorphism p : Conf×3 (F̃`)→ Conf×3 (F̃`)∨ with
p∗(W ) =WGS. For the initial cluster tori, this identifies Ξ with the
Knutson-Tao hive cone.
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Connection to [GS15] and the Knutson-Tao Hive Cone

Identifying the cones pictorially

⇐⇒
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