Littlewood-Richardson coefficients from Mirror **Symmetry**

Timothy Magee

Imperial College London

[arXiv:1709.05776 \[math.AG\]](https://arxiv.org/abs/1709.05776)

Motivating Question

How do we decompose a tensor product of irreducible GL_n representations as a direct sum?

Motivating Question

How do we decompose a tensor product of irreducible GL_n representations as a direct sum?

$$
V_{\alpha} \otimes V_{\beta} = \bigoplus_{\gamma} V_{\gamma}^{\oplus c_{\alpha,\beta}^{\gamma}}
$$

Motivating Question

How do we decompose a tensor product of irreducible GL_n representations as a direct sum?

$$
V_{\alpha} \otimes V_{\beta} = \bigoplus_{\gamma} V_{\gamma}^{\oplus c_{\alpha,\beta}^{\gamma}}
$$

KORKARYKERKER POLO

How do we compute the Littlewood-Richardson coefficients $c_{\alpha,\beta}^\gamma ?$

Outline

• Review of Knutson-Tao hive cone

Outline

- **Review of Knutson-Tao hive cone**
- Representation theory set-up: Which space should we study?

Outline

- **Review of Knutson-Tao hive cone**
- Representation theory set-up: Which space should we study?

KORKARYKERKER POLO

Log Calabi-Yau mirror symmetry background and solution

Advantages of Mirror Symmetry Approach

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Lots of cones, intrinsic "cone"

Advantages of Mirror Symmetry Approach

- Lots of cones, intrinsic "cone"
- **Canonical Bases**

Advantages of Mirror Symmetry Approach

- Lots of cones, intrinsic "cone"
- **Canonical Bases**
- Very general construction

$$
V_{\alpha} \otimes V_{\beta} = \bigoplus_{\gamma} V_{\gamma}^{\oplus c_{\alpha,\beta}^{\gamma}}
$$

$$
V_{\alpha}\otimes V_{\beta}\otimes V_{\delta}=\bigoplus_{\gamma}V_{\gamma}^{\oplus c_{\alpha,\beta}^{\gamma}}\otimes V_{\delta}
$$

$$
\left(V_{\alpha}\otimes V_{\beta}\otimes V_{\delta}\right)^{\operatorname{GL}_n}=\left(\bigoplus_{\gamma}V_{\gamma}^{\oplus c_{\alpha,\beta}^{\gamma}}\otimes V_{\delta}\right)^{\operatorname{GL}_n}
$$

$$
\left(V_{\alpha}\otimes V_{\beta}\otimes V_{\delta}\right)^{\operatorname{GL}_n}=\operatorname{id}\nolimits_{\mathbb{C}}^{\oplus c_{\alpha,\beta}^{-w_0(\delta)}}
$$

$$
\left(V_{\alpha}\otimes V_{\beta}\otimes V_{\delta}\right)^{\operatorname{GL}_n}=\operatorname{id}\nolimits_{\mathbb{C}}^{\oplus c_{\alpha,\beta}^{-w_0(\delta)}}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Given three irreducible GL_n representations V_α , V_β , V_γ , what is the dimension of $\left(V_\alpha\otimes V_\beta\otimes V_\gamma\right)^{\operatorname{GL}_n}$?

Start with $\mathcal{H} = \left\{ (a, b, c) \in (\mathbb{Z}_{\geq 0})^3 \; \middle| \; \right.$ $a+b+c=n\Big\}$. Take real labelings $\mathbb{R}^\mathcal{H}.$

 $\mathcal H$ for $n = 4$ $R_{\rm max}$ is the Knutson-Tao hive cone.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0$

活

 2990

- Start with $\mathcal{H} = \left\{ (a, b, c) \in (\mathbb{Z}_{\geq 0})^3 \; \middle| \; \right.$ $a+b+c=n\Big\}$. Take real labelings $\mathbb{R}^\mathcal{H}.$
- Impose rhombus inequalities.

- Start with $\mathcal{H} = \left\{ (a, b, c) \in (\mathbb{Z}_{\geq 0})^3 \; \middle| \; \right.$ $a+b+c=n\Big\}$. Take real labelings $\mathbb{R}^\mathcal{H}.$
- Impose rhombus inequalities.
- Take quotient by linear subspace spanned by $1_{\mathcal{H}}$.

 $y = \frac{1}{x}$ and $y = \frac{1}{x}$ are $\frac{1}{x}$ and $\frac{1}{x}$ its points are called hives. Result is the Knutson-Tao hive cone.

KOD KAR KED KED E YOUN

To compute $\dim\, (V_\alpha \otimes V_\beta \otimes V_\gamma)^{\mathrm{GL}_n}$:

• Fill the border as shown.

To compute $\dim\, (V_\alpha \otimes V_\beta \otimes V_\gamma)^{\mathrm{GL}_n}$:

- Fill the border as shown.
- Count integral hives with this border.

Petr-Weyl Theorem

Let G be a reductive group. As $G \times G$ bimodules

$$
\mathcal{O}(G) = \bigoplus_{\lambda} V_{\lambda} \otimes V_{\lambda}^*
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

where the sum is over isomorphism classes of irreducible rational representations of G.

Consequence for $G = GL_n$

$$
\mathcal{O}(\mathrm{GL}_n) = \bigoplus_\lambda V_\lambda \otimes V_\lambda^*
$$

Consequence for $G = GL_n$

$$
\mathcal{O}(\mathrm{GL}_n)^{1 \times U} = \left(\bigoplus_{\lambda} V_{\lambda} \otimes V_{\lambda}^*\right)^{1 \times U}
$$

where U consists of upper triangular matrices with all diagonal entries 1.

Consequence for $G = GL_n$

$$
\mathcal{O}(\mathrm{GL}_n\, / U) = \bigoplus_{\lambda} V_{\lambda} \otimes \mathbb{C} \cdot u_{\lambda}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

where u_{λ} is the highest weight vector of V_{λ}^* .

Consequence for $G = GL_n$

$$
\mathcal{O}(\mathrm{GL}_n\, / U) = \bigoplus_\lambda V_\lambda
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

This is a weight space decomposition for right action of maximal torus, with V_{λ} the $-w_0(\lambda)$ weight space.

Consequence for $G = GL_n$

$$
\mathcal{O}(\mathrm{GL}_n\, / U) = \bigoplus_{\lambda} V_{\lambda}
$$

This is a weight space decomposition for right action of maximal torus, with V_{λ} the $-w_0(\lambda)$ weight space.

$\text{Conf}_3(\text{GL}_n/U)$

Interested in the spaces $(V_{\alpha}\otimes V_{\beta}\otimes V_{\gamma})^{{\rm GL}_{n}}.$

$$
\mathcal{O}\left(\operatorname{GL}_{n}/U\right)=\bigoplus_{\alpha}V_{\alpha}
$$

Consequence for $G = GL_n$

$$
\mathcal{O}(\mathrm{GL}_n\, / U) = \bigoplus_{\lambda} V_{\lambda}
$$

This is a weight space decomposition for right action of maximal torus, with V_{λ} the $-w_0(\lambda)$ weight space.

$\text{Conf}_3(\text{GL}_n/U)$

Interested in the spaces $(V_{\alpha}\otimes V_{\beta}\otimes V_{\gamma})^{{\rm GL}_{n}}.$

$$
\mathcal{O}\left((\operatorname{GL}_n/U)^{\times 3}\right) = \bigoplus_{\alpha,\beta,\gamma} V_\alpha \otimes V_\beta \otimes V_\gamma
$$

Consequence for $G = GL_n$

$$
\mathcal{O}(\mathrm{GL}_n\, / U) = \bigoplus_{\lambda} V_{\lambda}
$$

This is a weight space decomposition for right action of maximal torus, with V_{λ} the $-w_0(\lambda)$ weight space.

$\text{Conf}_3(\text{GL}_n/U)$

Interested in the spaces $(V_{\alpha}\otimes V_{\beta}\otimes V_{\gamma})^{{\rm GL}_{n}}.$

$$
\mathcal{O}\left(\mathrm{GL}_n\,\backslash (\mathrm{GL}_n\,/U)^{\times 3}\right) = \Big(\bigoplus_{\alpha,\beta,\gamma} V_\alpha \otimes V_\beta \otimes V_\gamma \Big)^{\mathrm{GL}_n}
$$

Consequence for $G = GL_n$

$$
\mathcal{O}(\mathrm{GL}_n\, / U) = \bigoplus_{\lambda} V_{\lambda}
$$

This is a weight space decomposition for right action of maximal torus, with V_{λ} the $-w_0(\lambda)$ weight space.

$\text{Conf}_3(\text{GL}_n/U)$

Interested in the spaces $(V_{\alpha}\otimes V_{\beta}\otimes V_{\gamma})^{{\rm GL}_{n}}.$

$$
\mathcal{O}\left(\operatorname{GL}_n\backslash (\operatorname{GL}_n/U)^{\times 3}\right) = \Big(\bigoplus_{\alpha,\beta,\gamma} V_\alpha \otimes V_\beta \otimes V_\gamma \Big)^{\operatorname{GL}_n}
$$

 ${\rm Conf}_3({\rm GL}_n\,/U) \vcentcolon= {\rm GL}_n \,\backslash ({\rm GL}_n\, /U)^{\times 3}$ defined and studied in [\[FG06\]](#page-113-1), [\[GS15\]](#page-113-2).

Definition (Log Calabi-Yau variety)

A smooth complex variety U with a unique volume form Ω having at worst a simple pole along any divisor in any compactification of U

KORKARYKERKER POLO

Definition (Log Calabi-Yau variety)

A smooth complex variety U with a unique volume form Ω having at worst a simple pole along any divisor in any compactification of U

KORKAR KERKER ST VOOR

Example

Algebraic torus
$$
T = (\mathbb{C}^*)^n
$$
, $\Omega = \frac{dz_1}{z_1} \wedge \cdots \wedge \frac{dz_n}{z_n}$

Definition (Log Calabi-Yau variety)

A smooth complex variety U with a unique volume form Ω having at worst a simple pole along any divisor in any compactification of U

Example

Algebraic torus $T = (\mathbb{C}^*)^n$, $\Omega = \frac{dz_1}{z_1} \wedge \cdots \wedge \frac{dz_n}{z_n}$ **Fact:** If (Y, D) is any toric variety with its toric boundary divisor, then Ω has a simple pole along each component of D .

KELK KØLK VELKEN EL 1990

Example (Carefully glued tori)

$$
U = \bigcup_{i} T_i / \sim
$$

$$
\mu_{ij} : T_i \dashrightarrow T_j, \qquad \mu_{ij}^* (\Omega_j) = \Omega_i
$$

Example (Carefully glued tori)

$$
U = \bigcup_{i} T_i / \sim
$$

$$
\mu_{ij} : T_i \dashrightarrow T_j, \qquad \mu_{ij}^* (\Omega_j) = \Omega_i
$$

KELK KØLK VELKEN EL 1990

Example (Blow-up of toric variety)

Example (Carefully glued tori)

$$
U = \bigcup_{i} T_i / \sim
$$

$$
\mu_{ij} : T_i \dashrightarrow T_j, \qquad \mu_{ij}^* (\Omega_j) = \Omega_i
$$

Example (Blow-up of toric variety)

$$
\bullet \; (\overline{Y}, \overline{D}) \text{ toric variety}
$$

$$
\left.\begin{matrix} \diagup \\ \diagdown \end{matrix}\right|
$$

KELK KØLK VELKEN EL 1990

Example (Carefully glued tori)

$$
U = \bigcup_{i} T_i / \sim
$$

$$
\mu_{ij} : T_i \dashrightarrow T_j, \qquad \mu_{ij}^* (\Omega_j) = \Omega_i
$$

Example (Blow-up of toric variety)

- \bullet $(\overline{Y}, \overline{D})$ toric variety
- $H \subset \overline{D}$ codim 1 locus of boundary (codim 2 in \overline{Y})

KORKAR KERKER ST VOOR
Cluster Varieties: Context and Definition ([\[GHK15\]](#page-113-0))

Example (Carefully glued tori)

$$
U = \bigcup_{i} T_i / \sim
$$

$$
\mu_{ij} : T_i \dashrightarrow T_j, \qquad \mu_{ij}^* (\Omega_j) = \Omega_i
$$

Example (Blow-up of toric variety)

- \bullet $(\overline{Y}, \overline{D})$ toric variety
- \bullet $H \subset \overline{D}$ codim 1 locus of boundary (codim 2 in \overline{Y})
- \bullet (Y, D) blow-up of \overline{Y} along H, together with strict transform of \overline{D}

KOD KARD KED KED A GAA

Cluster Varieties: Context and Definition ([\[GHK15\]](#page-113-0))

Example (Carefully glued tori)

$$
U = \bigcup_{i} T_i / \sim
$$

$$
\mu_{ij} : T_i \dashrightarrow T_j, \qquad \mu_{ij}^* (\Omega_j) = \Omega_i
$$

Example (Blow-up of toric variety)

- \bullet $(\overline{Y}, \overline{D})$ toric variety
- \bullet $H \subset \overline{D}$ codim 1 locus of boundary (codim 2 in \overline{Y})
- \bullet (Y, D) blow-up of \overline{Y} along H, together with strict transform of \overline{D}
- $\bullet U := Y \setminus D$ is log CY

KOD KARD KED KED A GAA

Cluster Varieties: Context and Definition ([\[GHK15\]](#page-113-0))

Example (Carefully glued tori)

$$
U = \bigcup_{i} T_i / \sim
$$

$$
\mu_{ij} : T_i \dashrightarrow T_j, \qquad \mu_{ij}^* (\Omega_j) = \Omega_i
$$

Example (Blow-up of toric variety)

- \bullet $(\overline{Y}, \overline{D})$ toric variety
- $H \subset \overline{D}$ codim 1 locus of boundary (codim 2 in \overline{Y})
- \bullet (Y, D) blow-up of \overline{Y} along H, together with strict transform of \overline{D}
- \bullet $U := Y \setminus D$ is log CY

Two ways of describing a Cluster Variety

KORKAR KERKER ST VOOR

Decorated flags

• Let a decorated flag be a complete flag $X_{\bullet} = (X_1 \subset \cdots \subset X_n)$, together with a non-zero vector $x_i \in X_i/X_{i-1}$ in each successive quotient.

Decorated flags

- Let a decorated flag be a complete flag $X_{\bullet} = (X_1 \subset \cdots \subset X_n)$, together with a non-zero vector $x_i \in X_i/X_{i-1}$ in each successive quotient.
- \bullet The decorated flag variety $\mathcal{F}\ell$ parametrizes these, and is isomorphic to GL_n/U .

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

 QQ

Decorated flags

- Let a decorated flag be a complete flag $X_{\bullet} = (X_1 \subset \cdots \subset X_n)$, together with a non-zero vector $x_i \in X_i/X_{i-1}$ in each successive quotient.
- The decorated flag variety $F\ell$ parametrizes these, and is isomorphic to GL_n/U .

KOD KAR KED KED E YOUN

 \bullet Conf₃($\mathcal{F}\ell$) parametrizes triples of decorated flags, defined up to diagonal GL_n action.

Decorated flags

- Let a decorated flag be a complete flag $X_{\bullet} = (X_1 \subset \cdots \subset X_n)$, together with a non-zero vector $x_i \in X_i/X_{i-1}$ in each successive quotient.
- The decorated flag variety $F\ell$ parametrizes these, and is isomorphic to GL_n/U .
- $\text{Conf}_3(\mathcal{F}\ell)$ parametrizes triples of decorated flags, defined up to diagonal GL_n action.
- $(X_{\bullet}, Y_{\bullet})$ is in **generic position** if X_i and Y_{n-i} intersect transversely for all i .

KORKAR KERKER ST VOOR

Decorated flags

- Let a decorated flag be a complete flag $X_{\bullet} = (X_1 \subset \cdots \subset X_n)$, together with a non-zero vector $x_i \in X_i/X_{i-1}$ in each successive quotient.
- The decorated flag variety $F\ell$ parametrizes these, and is isomorphic to GL_n/U .
- $\text{Conf}_3(\mathcal{F}\ell)$ parametrizes triples of decorated flags, defined up to diagonal GL_n action.
- $(X_{\bullet}, Y_{\bullet})$ is in **generic position** if X_i and Y_{n-i} intersect transversely for all i .
- $\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell) \subset \mathrm{Conf}_3(\widetilde{\mathcal{F}}\ell)$ is the locus where triples of decorated flags $(X, Y, Z) := ((X_{\bullet}, x_{\bullet}), (Y_{\bullet}, y_{\bullet}), (Z_{\bullet}, z_{\bullet}))$ are in generic configuration, meaning each pair of flags is in generic position.

Cluster Structure of $\mathrm{Conf}_3(\overline{\mathcal{F}}\ell)$ ([\[FG06\]](#page-113-1), [\[GS15\]](#page-113-2))

Take $V \cong \mathbb{C}^n$, and choose volume form $\omega \in \wedge^n V^*$.

- Take $V \cong \mathbb{C}^n$, and choose volume form $\omega \in \wedge^n V^*$.
- Define $A_{(a,b,c)}:(X,Y,Z)\mapsto \omega(x_1,\ldots,x_a,y_1,\ldots,y_b,z_1,\ldots,z_c).$

KID KA KERKER KID KO

- Take $V \cong \mathbb{C}^n$, and choose volume form $\omega \in \wedge^n V^*$.
- Define $A_{(a,b,c)}:(X,Y,Z)\mapsto \omega(x_1,\ldots,x_a,y_1,\ldots,y_b,z_1,\ldots,z_c).$

$A_{(4,0,0)}$

KORKA SERKER YOUR

 $A_{(4,0,0)}$

KORKARYKERKER OQO

 $A_{(4,0,0)}$

KORKAR KERKER ST VOOR

Initial cluster and quiver for a torus in $\text{SL}_n\setminus\widetilde{\mathcal{F}\!\ell}^{\times 3}.$

 $A_{(4,0,0)}$

KOD KARD KED KED A GAA

Initial cluster and quiver for a torus in $\mathrm{SL}_n\setminus\widetilde{\mathcal{H}}^{\times 3}.$

Note that $A_{(a,b,c)}$ respects the quotient by ${\rm SL}_n.$

 $A_{(4,0,0)}$

Initial cluster and quiver for a torus in $\mathrm{SL}_n\setminus\widetilde{\mathcal{H}}^{\times 3}.$

Note that $A_{(a,b,c)}$ respects the quotient by ${\rm SL}_n.$

 $\prod A^{r_{(a,b,c)}}_{(a,b,c)}$ $a+b+c=n$ $\frac{r_{(a,b,c)}}{(a,b,c)}$ is fixed by $\operatorname{GL}\nolimits_n$ if and only if $\quad \sum\quad r_{(a,b,c)} = 0.$ $a+b+c=n$

K ロ X K 레 X K 코 X K 코 X - 코 - YO Q Q

$$
\operatorname{Conf}_{3}^{\times}(\widetilde{\mathcal{F}}) \longrightarrow \operatorname{Conf}_{3}(\widetilde{\mathcal{F}}) \longrightarrow \begin{matrix} T_{\mathrm{Pic}(\mathrm{Conf}_3(\mathcal{F}))}^{\vee} & = H^{\times 3} \\ \downarrow & \downarrow \\ \operatorname{Conf}_{3}^{\times}(\mathcal{F}) \longrightarrow \operatorname{Conf}_{3}(\mathcal{F}) \end{matrix}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Strategy

• Equip
$$
\mathcal{O}(\text{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell))
$$
 with a canonical basis \mathbf{B}^{\times} .

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Strategy

- Equip $\mathcal{O}(\mathrm{Conf}_3^\times(\widetilde{\mathcal{H}}))$ with a canonical basis \mathbf{B}^\times .
- Describe $\mathbf{B} := \mathbf{B}^{\times} \cap \mathcal{O}(\mathrm{Conf}_3(\widetilde{\mathcal{F}}\ell))$ and show it is a basis for $\mathcal{O}(\text{Conf}_3(\widetilde{\mathcal{F}}\ell)) = \bigoplus_{\alpha,\beta,\gamma} (V_\alpha \otimes V_\beta \otimes V_\gamma)^{\text{GL}_n}.$

Strategy

- Equip $\mathcal{O}(\mathrm{Conf}_3^\times(\widetilde{\mathcal{H}}))$ with a canonical basis \mathbf{B}^\times .
- Describe $\mathbf{B} := \mathbf{B}^{\times} \cap \mathcal{O}(\mathrm{Conf}_3(\widetilde{\mathcal{F}}\ell))$ and show it is a basis for $\mathcal{O}(\text{Conf}_3(\widetilde{\mathcal{F}}\ell)) = \bigoplus_{\alpha,\beta,\gamma} (V_\alpha \otimes V_\beta \otimes V_\gamma)^{\text{GL}_n}.$
- Show that elements of ${\bf B}$ are eigenfunctions of $H^{\times 3}$ action, so we get a basis for each summand.

Let (U, Ω) be log CY. A divisorial discrete valuation (ddv) $\nu : \mathbb{C}(U) \setminus \{0\} \to \mathbb{Z}$ is a discrete valuation of the form $\nu = \text{ord}_D(\cdot)$ where D is (a positive multiple of) an irreducible effective divisor in a variety birational to U .

KELK KØLK VELKEN EL 1990

Let (U, Ω) be log CY. A divisorial discrete valuation (ddv) $\nu : \mathbb{C}(U) \setminus \{0\} \to \mathbb{Z}$ is a discrete valuation of the form $\nu = \text{ord}_D(\cdot)$ where D is (a positive multiple of) an irreducible effective divisor in a variety birational to U . The **integral tropicalization of** U is $U^{\mathrm{trop}}(\mathbb{Z}) \vcentcolon= \{ \nu \text{ ddv} : \nu(\Omega) < 0 \} \cup \{0\}.$

KELK KØLK VELKEN EL 1990

Let (U, Ω) be log CY. A divisorial discrete valuation (ddv) $\nu : \mathbb{C}(U) \setminus \{0\} \to \mathbb{Z}$ is a discrete valuation of the form $\nu = \text{ord}_D(\cdot)$ where D is (a positive multiple of) an irreducible effective divisor in a variety birational to U . The **integral tropicalization of** U is $U^{\mathrm{trop}}(\mathbb{Z}) \vcentcolon= \{ \nu \text{ ddv} : \nu(\Omega) < 0 \} \cup \{0\}.$

KORKAR KERKER SAGA

Example

If $U = T_N$, $U^{\text{trop}}(\mathbb{Z}) = N$.

Let (U, Ω) be log CY. A divisorial discrete valuation (ddv) $\nu : \mathbb{C}(U) \setminus \{0\} \to \mathbb{Z}$ is a discrete valuation of the form $\nu = \text{ord}_D(\cdot)$ where D is (a positive multiple of) an irreducible effective divisor in a variety birational to U . The **integral tropicalization of** U is $U^{\mathrm{trop}}(\mathbb{Z}) \vcentcolon= \{ \nu \text{ ddv} : \nu(\Omega) < 0 \} \cup \{0\}.$

Example

If $U=T_N$, $U^{\operatorname{trop}}(\mathbb Z)=N$. Recall that toric divisors are indexed by cocharacters.

KID KA KERKER E VOLO

Tropicalization of a log Calabi-Yau variety ([\[GHKK18\]](#page-113-3))

Remark

We can extend scalars from $\mathbb{Z}_{>0}$ to $\mathbb{R}_{>0}$ in the definition of $U^{\mathrm{trop}}(\mathbb{Z})$ to obtain $U^{\mathrm{trop}}(\mathbb R)$ – the **real tropicalization of** $U.$

KOD KAR KED KED E YOUN

Tropicalization of a log Calabi-Yau variety ([\[GHKK18\]](#page-113-3))

Remark

We can extend scalars from $\mathbb{Z}_{>0}$ to $\mathbb{R}_{>0}$ in the definition of $U^{\mathrm{trop}}(\mathbb{Z})$ to obtain $U^{\mathrm{trop}}(\mathbb R)$ – the **real tropicalization of** $U.$

KORKAR KERKER ST VOOR

 $U^{\mathrm{trop}}(\mathbb R)$ has a natural piecewise linear structure.

Tropicalization of a log Calabi-Yau variety ([\[GHKK18\]](#page-113-3))

Remark

We can extend scalars from $\mathbb{Z}_{>0}$ to $\mathbb{R}_{>0}$ in the definition of $U^{\mathrm{trop}}(\mathbb{Z})$ to obtain $U^{\mathrm{trop}}(\mathbb R)$ – the **real tropicalization of** $U.$

KORKAR KERKER ST VOOR

- $U^{\mathrm{trop}}(\mathbb R)$ has a natural piecewise linear structure.
- When $U=T_N$, $U^{\operatorname{trop}}(\mathbb R)=N_{\mathbb R}$ is actually linear.

Let U be an affine log Calabi-Yau with *maximal boundary*

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Let U be an affine log Calabi-Yau with *maximal boundary* – this means it has a minimal model (Y, D) where D has a 0-stratum.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Let U be an affine log Calabi-Yau with *maximal boundary*. Then the mirror U^\vee is again an affine log Calabi-Yau with maximal boundary. The integral tropical points of U parametrize a basis of ϑ -functions on U^\vee , with multiplication given explicitly in terms of broken line counts.

Let U be an affine log Calabi-Yau with *maximal boundary*. Then the mirror U^\vee is again an affine log Calabi-Yau with maximal boundary. The integral tropical points of U parametrize a basis of ϑ -functions on U^\vee , with multiplication given explicitly in terms of broken line counts.

Cluster case

If U is a cluster variety, this is (a version of) the dual basis conjecture of Fock and Goncharov. ([\[FG09\]](#page-113-4)) Here, U and U^\vee are built out of dual tori.

KORK EXTERNE PROVIDE

Let U be an affine log Calabi-Yau with *maximal boundary*. Then the mirror U^\vee is again an affine log Calabi-Yau with maximal boundary. The integral tropical points of U parametrize a basis of ϑ -functions on U^\vee , with multiplication given explicitly in terms of broken line counts.

Cluster case

If U is a cluster variety, this is (a version of) the dual basis conjecture of Fock and Goncharov. ([\[FG09\]](#page-113-4)) Here, U and U^\vee are built out of dual tori. Conditions implying the conjecture holds for U are given in [\[GHKK18\]](#page-113-3).

KID KA KERKER KID KO

 $(\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell)^{\vee})^{\operatorname{trop}}(\mathbb{Z})$ parametrizes a canonical basis for $\mathcal{O}(\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell)).$

 $(\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell)^{\vee})^{\operatorname{trop}}(\mathbb{Z})$ parametrizes a canonical basis for $\mathcal{O}(\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell)).$

KID KA KERKER E VOLO

Remark

 $(\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell)^{\vee})^{\operatorname{trop}}(\mathbb{Z})$ parametrizes a canonical basis for $\mathcal{O}(\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell)).$

KELK KØLK VELKEN EL 1990

Remark

• In the toric analogy, this parametrization is like saying the cocharacters of T^\vee parametrize a canonical basis for $\mathcal{O}(T)$.

 $(\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell)^{\vee})^{\operatorname{trop}}(\mathbb{Z})$ parametrizes a canonical basis for $\mathcal{O}(\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell)).$

KELK KØLK VELKEN EL 1990

Remark

- In the toric analogy, this parametrization is like saying the cocharacters of T^\vee parametrize a canonical basis for $\mathcal{O}(T)$.
- \bullet This is the basis \mathbf{B}^{\times} .
Theorem (M.)

 $(\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell)^{\vee})^{\operatorname{trop}}(\mathbb{Z})$ parametrizes a canonical basis for $\mathcal{O}(\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell)).$

KELK KØLK VELKEN EL 1990

Remark

- In the toric analogy, this parametrization is like saying the cocharacters of T^\vee parametrize a canonical basis for $\mathcal{O}(T)$.
- \bullet This is the basis \mathbf{B}^{\times} .
- The next step is to cut it down to **B**.

Let $D_{(a,b,c)}\subset \textrm{Conf}_3(\mathcal{F}\ell)$ be the vanishing locus of $A_{(a,b,c)}.$

\n- Let
$$
D_{(a,b,c)} \subset \text{Conf}_3(\widetilde{\mathcal{F}}\ell)
$$
 be the vanishing locus of $A_{(a,b,c)}$.
\n- Set $D = \sum_{\text{Exactly 1 of } a,b,c \text{ is } 0} D_{(a,b,c)}$.
\n

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

• Let
$$
D_{(a,b,c)} \subset \text{Conf}_3(\widetilde{\mathcal{H}})
$$
 be the vanishing locus of $A_{(a,b,c)}$.

- Set $D = \sum_{(a,b,c)}$. Exactly 1 of a, b, c is 0
- Then $\mathrm{Conf}_3^\times(\widetilde{\mathcal{F}\ell}) = \mathrm{Conf}_3(\widetilde{\mathcal{F}\ell}) \setminus D$, and Ω has a simple pole along each component of D .

KORKARYKERKER OQO

• Let
$$
D_{(a,b,c)} \subset \text{Conf}_3(\widetilde{\mathcal{H}})
$$
 be the vanishing locus of $A_{(a,b,c)}$.

• Set
$$
D = \sum_{\text{Exactly 1 of } a, b, c \text{ is } 0} D_{(a,b,c)}
$$
.

- Then $\mathrm{Conf}_3^\times(\widetilde{\mathcal{F}\ell}) = \mathrm{Conf}_3(\widetilde{\mathcal{F}\ell}) \setminus D$, and Ω has a simple pole along each component of D.
- So each component of D defines a point $\nu_{(a,b,c)}$ of $\mathrm{Conf}_3^\times(\widetilde{\mathcal{F}}\ell)^{\mathrm{trop}}(\mathbb{Z}).$

KELK KØLK VELKEN EL 1990

• Let
$$
D_{(a,b,c)} \subset \text{Conf}_3(\widetilde{\mathcal{H}})
$$
 be the vanishing locus of $A_{(a,b,c)}$.

• Set
$$
D = \sum_{\text{Exactly 1 of } a, b, c \text{ is } 0} D_{(a,b,c)}
$$
.

- Then $\mathrm{Conf}_3^\times(\widetilde{\mathcal{F}\ell}) = \mathrm{Conf}_3(\widetilde{\mathcal{F}\ell}) \setminus D$, and Ω has a simple pole along each component of D .
- So each component of D defines a point $\nu_{(a,b,c)}$ of $\mathrm{Conf}_3^\times(\widetilde{\mathcal{F}}\ell)^{\mathrm{trop}}(\mathbb{Z}).$

KELK KØLK VELKEN EL 1990

 $\nu_{(a,b,c)}$ defines a ϑ -function $\vartheta_{(a,b,c)}$ on $\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}\!\ell})^{\vee}.$

• Let
$$
D_{(a,b,c)} \subset \text{Conf}_3(\widetilde{\mathcal{F}\ell})
$$
 be the vanishing locus of $A_{(a,b,c)}$.

• Set
$$
D = \sum_{\text{Exactly 1 of } a, b, c \text{ is } 0} D_{(a,b,c)}
$$
.

- Then $\mathrm{Conf}_3^\times(\widetilde{\mathcal{F}\ell}) = \mathrm{Conf}_3(\widetilde{\mathcal{F}\ell}) \setminus D$, and Ω has a simple pole along each component of D .
- So each component of D defines a point $\nu_{(a,b,c)}$ of $\mathrm{Conf}_3^\times(\widetilde{\mathcal{F}}\ell)^{\mathrm{trop}}(\mathbb{Z}).$

KOD KOD KED KED E VOOR

- $\nu_{(a,b,c)}$ defines a ϑ -function $\vartheta_{(a,b,c)}$ on $\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}\!\ell})^{\vee}.$
- The Landau-Ginzburg mirror to $\left(\mathrm{Conf}_3(\widetilde{\mathcal{F}}\!\ell),D \right)$ is

$$
W = \sum_{\text{Exactly 1 of } a, b, c \text{ is } 0} \vartheta_{(a, b, c)} : \text{Conf}_{3}^{\times}(\widetilde{\mathcal{F}\ell})^{\vee} \to \mathbb{C}.
$$

The tropical pairing

The tropical pairing

 $\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell)^{\mathrm{trop}}(\mathbb{Z})$ is by definition divisorial discrete valuations on $\mathbb{C}(\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell})) \setminus \{0\}.$

KELK KØLK VELKEN EL 1990

The tropical pairing

 $\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell)^{\mathrm{trop}}(\mathbb{Z})$ is by definition divisorial discrete valuations on $\mathbb{C}(\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell})) \setminus \{0\}.$

KELK KØLK VELKEN EL 1990

 $(\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell})^{\vee})^{\mathrm{trop}}(\mathbb{Z})$ parametrizes ϑ -functions on $\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell}).$

The tropical pairing

- $\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell)^{\mathrm{trop}}(\mathbb{Z})$ is by definition divisorial discrete valuations on $\mathbb{C}(\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell})) \setminus \{0\}.$
- $(\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell})^{\vee})^{\mathrm{trop}}(\mathbb{Z})$ parametrizes ϑ -functions on $\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell}).$
- Restriction of evaluation pairing gives

$$
\langle \cdot, \cdot \rangle : \text{Conf}_{3}^{\times}(\widetilde{\mathcal{F}}_{\ell})^{\text{trop}}(\mathbb{Z}) \times (\text{Conf}_{3}^{\times}(\widetilde{\mathcal{F}}_{\ell})^{\vee})^{\text{trop}}(\mathbb{Z}) \to \mathbb{Z}
$$

$$
(\nu, p) \mapsto \nu(\vartheta_p)
$$

KOD KOD KED KED E VOOR

The tropical pairing

- $\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell)^{\mathrm{trop}}(\mathbb{Z})$ is by definition divisorial discrete valuations on $\mathbb{C}(\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell})) \setminus \{0\}.$
- $(\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell})^{\vee})^{\mathrm{trop}}(\mathbb{Z})$ parametrizes ϑ -functions on $\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell}).$
- Restriction of evaluation pairing gives

$$
\langle \cdot, \cdot \rangle : \text{Conf}_{3}^{\times}(\widetilde{\mathcal{F}}_{\ell})^{\text{trop}}(\mathbb{Z}) \times (\text{Conf}_{3}^{\times}(\widetilde{\mathcal{F}}_{\ell})^{\vee})^{\text{trop}}(\mathbb{Z}) \to \mathbb{Z}
$$

$$
(\nu, p) \mapsto \nu(\vartheta_p)
$$

KOD KOD KED KED E VOOR

Swapping $\mathrm{Conf}_3^\times(\widetilde{\mathcal{F}\ell})$ and $\mathrm{Conf}_3^\times(\widetilde{\mathcal{F}\ell})^\vee$ gives pairing $\langle\;\cdot\;,\;\cdot\;\rangle^\vee$.

The tropical pairing

- $\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell)^{\mathrm{trop}}(\mathbb{Z})$ is by definition divisorial discrete valuations on $\mathbb{C}(\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell})) \setminus \{0\}.$
- $(\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell})^{\vee})^{\mathrm{trop}}(\mathbb{Z})$ parametrizes ϑ -functions on $\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell}).$
- Restriction of evaluation pairing gives

$$
\langle \cdot, \cdot \rangle : \text{Conf}_{3}^{\times}(\widetilde{\mathcal{F}\ell})^{\text{trop}}(\mathbb{Z}) \times (\text{Conf}_{3}^{\times}(\widetilde{\mathcal{F}\ell})^{\vee})^{\text{trop}}(\mathbb{Z}) \to \mathbb{Z}
$$

$$
(\nu, p) \mapsto \nu(\vartheta_p)
$$

- Swapping $\mathrm{Conf}_3^\times(\widetilde{\mathcal{F}\ell})$ and $\mathrm{Conf}_3^\times(\widetilde{\mathcal{F}\ell})^\vee$ gives pairing $\langle\;\cdot\;,\;\cdot\;\rangle^\vee$.
- Conjecturally $\langle \nu, p\rangle = \langle \nu, p\rangle^\vee$ in general. Equality is known if ϑ_ν or ϑ_p restricts to a character on some cluster torus.

Theorem (M.)

Every summand $\vartheta_{(a,b,c)}$ of W restricts to a character on some cluster torus. As a result, $p(\vartheta_{(a,b,c)}) = \langle \nu_{(a,b,c)}, p \rangle^{\vee} = \langle \nu_{(a,b,c)}, p \rangle = \nu_{(a,b,c)}(\vartheta_p)$ – the order of vanishing of ϑ_p along $D_{(a,b,c)}.$

Theorem (M.)

Every summand $\vartheta_{(a,b,c)}$ of W restricts to a character on some cluster torus. As a result, $p(\vartheta_{(a,b,c)}) = \langle \nu_{(a,b,c)}, p \rangle^{\vee} = \langle \nu_{(a,b,c)}, p \rangle = \nu_{(a,b,c)}(\vartheta_p)$ – the order of vanishing of ϑ_p along $D_{(a,b,c)}.$

Corollary

Define
$$
\vartheta_{\nu}^{\text{trop}}(p) = p(\vartheta_{\nu})
$$
 and
\n
$$
W^{\text{trop}} := \min \vartheta_{(a,b,c)}^{\text{trop}} : (\text{Conf}_{3}^{\times}(\widetilde{\mathcal{F}\ell})^{\vee})^{\text{trop}}(\mathbb{Z}) \to \mathbb{Z}.
$$
\nThen $\Xi(\mathbb{Z}) := \left\{ p \in (\text{Conf}_{3}^{\times}(\widetilde{\mathcal{F}\ell})^{\vee})^{\text{trop}}(\mathbb{Z}) \mid W^{\text{trop}}(p) \ge 0 \right\}$ parametrizes
\nthe elements of \mathbf{B}^{\times} that extend to $\text{Conf}_{3}(\widetilde{\mathcal{F}\ell})$.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Remark

Doesn't quite establish that $\Xi(\mathbb{Z})$ parametrizes a basis for $\mathcal{O}(\mathrm{Conf}_3(\mathcal{F}\ell))$ – it would fail, e.g. if ϑ_p and ϑ_q have poles on D, but the poles cancel in $\vartheta_p + \vartheta_q$.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Remark

Doesn't quite establish that $\Xi(\mathbb{Z})$ parametrizes a basis for $\mathcal{O}(\text{Conf}_3(\mathcal{F}\ell))$ – it would fail, e.g. if ϑ_p and ϑ_q have poles on D, but the poles cancel in $\vartheta_p + \vartheta_q$.

KORKAR KERKER SAGA

Theorem (Gross-Hacking-Keel-Kontsevich)

Suppose ϑ_{ν} restricts to a character on some cluster torus. If $\nu(\sum_p c_p \vartheta_p) \geq 0$, then $\nu(\vartheta_p) \geq 0$ for all p with $c_p \neq 0.$

Remark

Doesn't quite establish that $\Xi(\mathbb{Z})$ parametrizes a basis for $\mathcal{O}(\text{Conf}_3(\mathcal{F}\ell))$ – it would fail, e.g. if ϑ_p and ϑ_q have poles on D, but the poles cancel in $\vartheta_p + \vartheta_q$.

KORKAR KERKER SAGA

Theorem (Gross-Hacking-Keel-Kontsevich)

Suppose ϑ_{ν} restricts to a character on some cluster torus. If $\nu(\sum_p c_p \vartheta_p) \geq 0$, then $\nu(\vartheta_p) \geq 0$ for all p with $c_p \neq 0.$

Corollary

 $\Xi(\mathbb{Z})$ parametrizes a basis **B** for $\mathcal{O}(\text{Conf}_3(\mathcal{F}\ell)).$

B only depends on inclusion $\text{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell) \subset \text{Conf}_3(\widetilde{\mathcal{F}}\ell)$.

KID KA KERKER KID KO

B only depends on inclusion $\text{Conf}_3^{\times}(\overline{\mathcal{F}}\ell) \subset \text{Conf}_3(\overline{\mathcal{F}}\ell)$.

 $H^{\times 3}$ action preserves this action.

- **B** only depends on inclusion $\text{Conf}_3^{\times}(\overline{\mathcal{F}}\ell) \subset \text{Conf}_3(\overline{\mathcal{F}}\ell)$.
- $H^{\times 3}$ action preserves this action.
- $H^{\times 3}$ action must preserve $\mathbf{B}\text{-}$ the elements of $\mathbf B$ are $H^{\times 3}$ -eigenfunctions.

KID KA KERKER KID KO

- **B** only depends on inclusion $\text{Conf}_3^{\times}(\overline{\mathcal{F}}\ell) \subset \text{Conf}_3(\overline{\mathcal{F}}\ell)$.
- $H^{\times 3}$ action preserves this action.
- $H^{\times 3}$ action must preserve $\mathbf{B}\text{-}$ the elements of $\mathbf B$ are $H^{\times 3}$ -eigenfunctions.

Moreover:

Theorem (M.)

There is a map $\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell)^{\vee} \to (H^{\times 3})^{\vee}$ whose tropicalization w satisfies:

$$
w:\left(\mathrm{Conf}_3^\times(\widetilde{\mathcal{F}\!\ell})^\vee\right)^{\mathrm{trop}}(\mathbb{Z})\to \mathbb{Z} \\q\mapsto H^{\times 3}-\text{weight of }\vartheta_q.
$$

Then $P_{\alpha,\beta,\gamma}(\mathbb{Z}) := w^{-1}(-w_0(\alpha), -w_0(\beta) - w_0(\gamma)) \cap \Xi(\mathbb{Z})$ parametrizes a basis for $\left(V_{\alpha}\otimes V_{\beta}\otimes V_{\gamma}\right)^{\operatorname{GL}_n}.$

 $\bullet \Xi$ and $P_{\alpha,\beta,\gamma}$ are subsets of the piecewise linear manifold $(\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell})^{\vee})^{\mathrm{trop}}(\mathbb{R}).$

- $\bullet \Xi$ and $P_{\alpha,\beta,\gamma}$ are subsets of the piecewise linear manifold $(\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell})^{\vee})^{\mathrm{trop}}(\mathbb{R}).$
- Each cluster torus T_M in $\text{Conf}_3^\times(\widetilde{\mathcal{F}\ell})^\vee$ gives identification of $(\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell})^{\vee})^{\operatorname{trop}}(\mathbb{R})$ with $M_{\mathbb{R}}$.

KID KA KERKER E VOOR

- $\bullet \Xi$ and $P_{\alpha,\beta,\gamma}$ are subsets of the piecewise linear manifold $(\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell})^{\vee})^{\mathrm{trop}}(\mathbb{R}).$
- Each cluster torus T_M in $\text{Conf}_3^\times(\widetilde{\mathcal{F}\ell})^\vee$ gives identification of $(\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell})^{\vee})^{\operatorname{trop}}(\mathbb{R})$ with $M_{\mathbb{R}}$.

KORKAR KERKER SAGA

• This identifies Ξ with a cone and $P_{\alpha,\beta,\gamma}$ with a polytope.

- $\bullet \Xi$ and $P_{\alpha,\beta,\gamma}$ are subsets of the piecewise linear manifold $(\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell})^{\vee})^{\mathrm{trop}}(\mathbb{R}).$
- Each cluster torus T_M in $\text{Conf}_3^\times(\widetilde{\mathcal{F}\ell})^\vee$ gives identification of $(\mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell})^{\vee})^{\operatorname{trop}}(\mathbb{R})$ with $M_{\mathbb{R}}$.
- This identifies Ξ with a cone and $P_{\alpha,\beta,\gamma}$ with a polytope.

$\overline{P_{\alpha,\beta,\gamma}}$ for initial cluster torus

 Entries on indicated side of line sum to the given value

> $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$ 2990

Goncharov-Shen Potential

Goncharov and Shen define a potential on $\mathrm{Conf}_3^\times(\widetilde{\mathcal{F}}\ell)$ (rather than its mirror).

- Goncharov and Shen define a potential on $\mathrm{Conf}_3^\times(\widetilde{\mathcal{F}}\ell)$ (rather than its mirror).
- Points in $F\ell$ given as pairs (U, χ) where

- Goncharov and Shen define a potential on $\mathrm{Conf}_3^\times(\widetilde{\mathcal{F}}\ell)$ (rather than its mirror).
- Points in $F\ell$ given as pairs (U, χ) where
	- \bullet $U \subset GL_n$ is a maximal unipotent subgroup,

- Goncharov and Shen define a potential on $\mathrm{Conf}_3^\times(\widetilde{\mathcal{F}}\ell)$ (rather than its mirror).
- Points in $\mathcal{F}\ell$ given as pairs (U, χ) where
	- $U \subset GL_n$ is a maximal unipotent subgroup,
	- $\chi: U \to \mathbb{C}_a$ is a **non-degenerate** additive character– the stabilizer of (U, χ) under conjugation is precisely U.

- Goncharov and Shen define a potential on $\mathrm{Conf}_3^\times(\widetilde{\mathcal{F}}\ell)$ (rather than its mirror).
- Points in $\mathcal{F}\ell$ given as pairs (U, χ) where
	- $U \subset GL_n$ is a maximal unipotent subgroup,
	- $\chi: U \to \mathbb{C}_a$ is a **non-degenerate** additive character– the stabilizer of (U, χ) under conjugation is precisely U.
- For $((U_1,\chi_1),(U_2,\chi_2),(U_3,\chi_3))\in \text{Conf}_3^\times(\widetilde{\mathcal{F}\ell})$, there is a unique $u_{ik} \in U_i$ conjugating U_i to U_k .

- Goncharov and Shen define a potential on $\mathrm{Conf}_3^\times(\widetilde{\mathcal{F}}\ell)$ (rather than its mirror).
- Points in $\mathcal{F}\ell$ given as pairs (U, χ) where
	- $U \subset GL_n$ is a maximal unipotent subgroup,
	- $\chi: U \to \mathbb{C}_a$ is a **non-degenerate** additive character– the stabilizer of (U, χ) under conjugation is precisely U.
- For $((U_1,\chi_1),(U_2,\chi_2),(U_3,\chi_3))\in \text{Conf}_3^\times(\widetilde{\mathcal{F}\ell})$, there is a unique $u_{ik} \in U_i$ conjugating U_i to U_k .
- Results in natural function on $\mathrm{Conf}_3^\times(\widetilde{\mathcal{F}\!\ell})$:

$$
\mathcal{W}_{\mathsf{GS}} : \mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}\ell}) \to \mathbb{C}
$$

$$
((U_1, \chi_1), (U_2, \chi_2), (U_3, \chi_3)) \mapsto \chi_1(u_{23}) + \chi_2(u_{31}) + \chi_3(u_{12})
$$

Theorem (Goncharov-Shen)

For the initial cluster torus

$$
\left\{\nu \in \mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell)^{\mathrm{trop}}(\mathbb{R}) \: \left| \: \mathcal{W}_{\mathsf{GS}}^{\mathrm{trop}}(\nu) \geq 0 \right. \right\}
$$

KORKARYKERKER POLO

is precisely the Knutson-Tao hive cone.

Theorem (Goncharov-Shen)

For the initial cluster torus

$$
\left\{\nu \in \mathrm{Conf}_3^{\times}(\widetilde{\mathcal{F}}\ell)^{\mathrm{trop}}(\mathbb{R}) \: \left| \: \mathcal{W}_{\mathsf{GS}}^{\mathrm{trop}}(\nu) \geq 0 \right. \right\}
$$

is precisely the Knutson-Tao hive cone.

Theorem (M.)

There is an isomorphism $p: \text{Conf}_3^\times(\widetilde{\mathcal{F}}\ell) \to \text{Conf}_3^\times(\widetilde{\mathcal{F}}\ell)^\vee$ with $p^*(W) = \mathcal{W}_{\textsf{GS}}$. For the initial cluster tori, this identifies Ξ with the Knutson-Tao hive cone.

KORKAR KERKER ST VOOR

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @
Computing $c_{(2,1,0),(2,1,0)}^{(3,2,1)}=\dim\left(V_{(2,1,0)}\otimes V_{(2,1,0)}\otimes V_{(-1,-2,-3)}\right)^{\operatorname{GL}_3}$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Example $(c_{(2.1,0)}^{(3,2,1)}$ $\left(\frac{1}{2,1,0)} = 2 \right)$

 $2Q$ ŧ

Example $(c_{(2,1,0),(2,1,0)}^{(3,2,1)}=2$)

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

Example $(c_{(2,1,0),(2,1,0)}^{(3,2,1)}=2$)

KOKK@KKEKKEK E 1990

Example $(c_{(2,1,0),(2,1,0)}^{(3,2,1)}=2$)

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

References

- [FG06] V. Fock and A. Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Inst. Hautes Etudes Sci. Publ. Math. 103(1), 1-211 (2006).
- [FG09] V. Fock and A. Goncharov, Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Ecole Norm. Sup. 42(6), 865–930 (2009).
- [GHK15] M. Gross, P. Hacking and S. Keel, Birational geometry of cluster algebras, Algebraic Geometry $2(2)$, 137–175 (May 2015).
- [GHKK18] M. Gross, P. Hacking, S. Keel and M. Kontsevich, Canonical bases for cluster algebras, J. Amer. Math. Soc. $31(2)$, 497–608 (2018).
	- [GS15] A. Goncharov and L. Shen, Geometry of canonical bases and mirror symmetry, Invent. Math. 202(2), 487-633 (2015).
	- [KT98] A. Knutson and T. Tao, Apiary views of the Berenstein-Zelevinsky polytope, and Klyachko's saturation conjecture, (1998), arXiv:math/980[716](#page-112-0)[0v](#page-113-0)[1](#page-112-0) [\[m](#page-113-0)[a](#page-107-0)[t](#page-108-0)[h.R](#page-113-0)[T](#page-108-0)[\].](#page-113-0) \equiv

 000