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Cluster varieties (skew symmetric type, [FG09], [GHK15a])

Initial data (Γ, s)

Γ :=



Lattice N with skew-form { · , · } : N ×N → Z

Saturated sublattice Nuf ⊂ N
Index set I with |I| = rank (N) and subset Iuf with
|Iuf | = rank (Nuf)

Labeled basis s = (ei : i ∈ I) of N with {ei : i ∈ Iuf} basis of
Nuf

Cluster tori

Let M := Hom (N,Z).

TM ;s := Spec (C[N ]) TN ;s := Spec (C[M ])
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Cluster varieties (skew symmetric type, [FG09], [GHK15a])

Mutation

For k ∈ Iuf :

µk(s) := (e′i : i ∈ I) where e′i :=

{
ei + [{ei, ek}]+ ek for i 6= k

−ek for i = k

TM ;s 99K TM ;µk(s) defined in terms of pullback of functions by

µ∗k(z
n) = zn (1 + zek)−{n,ek}

TN ;s 99K TN ;µk(s) defined in terms of pullback of functions by

µ∗k(z
m) = zm

(
1 + z{ek, · }

)−〈ek,m〉
Two flavors of cluster varieties

X :=

XΓ,[s] :=
⋃

s′∈[s]

TM ;s′/ ∼

A :=

AΓ,[s] :=
⋃

s′∈[s]

TN ;s′/ ∼
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Cluster ensemble maps ([FG09], [GHK15a])

Definition

Denote the projection M →M/N⊥uf by π. A cluster ensemble lattice
map is a map p∗ : N →M such that

1 p∗|Nuf
: n 7→ ({n, · } : N → Z), and

2 π ◦ p∗ : n 7→ {n, · }|Nuf
.

Observe: Cluster ensemble maps commute with mutation.

Definition

A cluster ensemble lattice map p∗ defines a cluster ensemble map
p : A → X in terms of pullback of functions.

p∗(zn) = zp
∗(n)
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The ϑ-basis ([GHK15b], [GHKK18])

Fact/Definition

Cluster varieties V are log Calabi-Yau schemes–

they are endowed with a unique (up to scaling) volume form Ω having at
worst a simple pole along any irreducible boundary divisor in any
compactification of V.

Example (Log Calabi-Yau scheme)

Algebraic torus T = (C∗)n, Ω = dz1
z1
∧ · · · ∧ dzn

zn
.

If (Y,D) is any toric variety with toric boundary divisor, Ω has a simple
pole along each component of D.
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The ϑ-basis ([GHK15b], [GHKK18])

Definition

Let (V,Ω) be log Calabi-Yau scheme. A divisorial discrete valuation
(ddv) ν : C(V) \ 0→ Z is a discrete valuation of the form ν = ordD( · )
where D is (a positive multiple of) an irreducible effective divisor in a
variety birational to V.

The integral tropicalization of V is
Vtrop(Z) := {ν ddv : ν(Ω) < 0} ∪ {0}.

Example (Integral tropicalization)

T trop
N (Z) = N

Recall that toric divisors are indexed by cocharacters.
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The ϑ-basis ([GHK15b], [GHKK18])

Conjecture (Gross-Hacking-Keel)

Let V be an affine log Calabi-Yau with maximal boundary.

Then

1 we have an algebra AV with basis Vtrop(Z), where multiplication is
given by broken line counts, and

2 Spec(AV) = V∨.

Aside

This means there is some compactification (Y,D) of V such that Ω has a
pole along all divisorial components of D and D has a 0-stratum.



The ϑ-basis ([GHK15b], [GHKK18])

Conjecture (Gross-Hacking-Keel)

Let V be an affine log Calabi-Yau with maximal boundary.

Then

1 we have an algebra AV with basis Vtrop(Z), where multiplication is
given by broken line counts, and

2 Spec(AV) = V∨.

Aside

This means there is some compactification (Y,D) of V such that Ω has a
pole along all divisorial components of D and D has a 0-stratum.



The ϑ-basis ([GHK15b], [GHKK18])

Conjecture (Gross-Hacking-Keel)

Let V be an affine log Calabi-Yau with maximal boundary. Then

1 we have an algebra AV with basis Vtrop(Z), where multiplication is
given by broken line counts, and

2 Spec(AV) = V∨.

Aside

This means there is some compactification (Y,D) of V such that Ω has a
pole along all divisorial components of D and D has a 0-stratum.



The ϑ-basis ([GHK15b], [GHKK18])

Conjecture (Gross-Hacking-Keel)

Let V be an affine log Calabi-Yau with maximal boundary. Then

1 we have an algebra AV with basis Vtrop(Z), where multiplication is
given by broken line counts, and

2 Spec(AV) = V∨.

Aside

These counts are a tropical version of log Gromov-Witten invariants.



The ϑ-basis ([GHK15b], [GHKK18])

Conjecture (Gross-Hacking-Keel)

Let V be an affine log Calabi-Yau with maximal boundary. Then

1 we have an algebra AV with basis Vtrop(Z), where multiplication is
given by broken line counts, and

2 Spec(AV) = V∨.

Aside

These counts are a tropical version of log Gromov-Witten invariants.



The ϑ-basis ([GHK15b], [GHKK18])

Conjecture (Gross-Hacking-Keel)

Let V be an affine log Calabi-Yau with maximal boundary. Then

1 we have an algebra AV with basis Vtrop(Z), where multiplication is
given by broken line counts, and

2 Spec(AV) = V∨.

Aside

This is known as the ϑ-basis, with elements written as ϑν for
ν ∈ Vtrop(Z).



The ϑ-basis ([GHK15b], [GHKK18])

Cluster case

If V is a cluster variety, this is a corrected form of a conjecture of
Fock-Goncharov ([FG09]).

This is established for “Fock-Goncharov dual” cluster varieties
satisfying certain affineness conditions in [GHKK18].

For such cluster varieties V, it is said that the full Fock-Goncharov
conjecture holds for V.

Marsh-Scott show that the full Fock-Goncharov conjecture holds for
the cluster varieties associated to Grassmannians ([MS16]).
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Induced maps of mirrors

Definition

Given a rational map f : U 99K V of log Calabi-Yaus with f∗(ΩV) = ΩU ,
the tropicalization of f is

f trop : U trop(Z)→ Vtrop(Z)

υ 7→ υ ◦ f∗.

Assuming the conjecture holds...

Let f : U → V be a map of affine log Calabi-Yaus with maximal boundary
satisfying:

If R
(
ϑυ : υ ∈ U trop(Z)

)
is a relation in AU , then

R
(
ϑf trop(υ) : υ ∈ U trop(Z)

)
is a relation in AV .

Then f trop : U trop(Z)→ Vtrop(Z) determines a map of algebras
AU → AV , and so a map of schemes f∨ : V∨ → U∨.
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Induced maps of mirrors

Proposition (Bossinger, Cheung, M, Nájera Chávez)

Assume the full Fock-Goncharov conjecture holds for A and X and let p
be any cluster ensemble map.

If R
(
ϑa : a ∈ Atrop(Z)

)
is a relation in AA, then

R
(
ϑptrop(a) : a ∈ Atrop(Z)

)
is a relation in AX .

There is a choice of cluster structure for A∨ and X∨ such that
p∨ : X∨ → A∨ is again a cluster ensemble map.
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Induced maps of mirrors

p∨ : X ∨ → A∨ as cluster ensemble map

In skew symmetric type, relevant choice of cluster structure is associated
to the chiral dual initial data (Γop, sop):

NΓop = NΓ, with skew-form { · , · }Γop = − { · , · }Γ
(Nuf)Γop = (Nuf)Γ

IΓop = IΓ and (Iuf)Γop = (Iuf)Γ

sop = s

Then:

X∨ = AΓop,[sop]

A∨ = XΓop,[sop]

(p∨)∗ : n 7→ (p∗)∗(n)
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Grassmannian cluster structure

Plabic graphs for Grn−k (Cn) ([Pos06], [RW19])

A plabic graph G is an undirected graph drawn on a disk with
cyclically ordered boundary vertices (1, · · · , n), and each internal
vertex either black or white.

The trip Ti is the path from i to some boundary vertex πG(i)
consisting of maximal right turns at black vertices and maximal left
turns at white vertices.

If G is a “reduced” plabic graph and πG(i) = i+ (n− k) for all i– “G

is of type πk,n”– then the trips assign Plücker labels in
( [n]
n−k
)

to each
face as illustrated in the following example.



Grassmannian cluster structure

Plabic graphs for Grn−k (Cn) ([Pos06], [RW19])

A plabic graph G is an undirected graph drawn on a disk with
cyclically ordered boundary vertices (1, · · · , n), and each internal
vertex either black or white.

The trip Ti is the path from i to some boundary vertex πG(i)
consisting of maximal right turns at black vertices and maximal left
turns at white vertices.

If G is a “reduced” plabic graph and πG(i) = i+ (n− k) for all i– “G

is of type πk,n”– then the trips assign Plücker labels in
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Grassmannian cluster structure

A cluster structure ([Sco06])

The corresponding Plücker coordinates form a cluster in Scott’s A-cluster
structure of UTGrn−k(Cn)

◦ := UTGrn−k(Cn) \D. Here,

D =

n∑
i=1

D[i+1,i+(n−k)], where

DJ :=
{
x ∈ UTGrn−k(Cn) : pJ(x) = 0

}
.

The skew form and labeled basis are encoded in a quiver Q(G):

{ei, ej} = # { arrows •i → •j} −# { arrows •j → •i}

Q(G) is constructed as in the following example:
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Grassmannian cluster structure

Plabic graphs for Grk (Cn)

Let Gop be the plabic graph obtained by swapping colors of all internal
vertices of G.

If G is a reduced plabic graph of type πk,n, then Gop is a reduced
plabic graph of type πn−k,n.

We obtain an A cluster in UTGrk(Cn).

The Plücker indices associated to the faces of G and Gop are related
by J 7→ πG(J)c.

We have Q(G)op = Q(Gop)– so (Γ, s) 7→ (Γop, sop).
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Grassmannian cluster structure

Two X -cluster structures

If AΓ,[s] is the A-cluster variety in UTGrn−k(Cn), then the same initial
data determines a cluster variety XΓ,[s].

A plabic graph G of type πk,n also determines an X variety X net
[G]

explicitly embedded in Grn−k (Cn) in terms of network parameters.
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Grassmannian cluster structure

Definition ([RW19])

A perfect orientation O of a plabic graph G is an orientation of its
edges such that every black internal vertex has exactly one outgoing
edge and every white internal vertex has exactly one incoming edge.

If G is of type πk,n, then n− k boundary vertices of (G,O) will be
sources and the remaining k sinks. Call the source set IO.

A flow from IO to J ∈
( [n]
n−k
)

is a vertex-disjoint collection of directed
paths with sources IO \ (IO ∩ J) and targets J \ (IO ∩ J).

To each face υ of G, associate a network parameter xυ.

Let the weight of a path ρ, denoted wt(ρ), be the product of all
network parameters xυ for υ a face to the left of ρ, and let the
weight of a flow F– wt(F )– be the product of the weights of all
paths ρ in F .
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Grassmannian cluster structure

X net
[G] ⊂ Grn−k (Cn) ([RW19])

Denote the set of faces of G by PG.

For each (G,O) of type πk,n, the torus

TG,O := Spec

C[x±1
υ : υ ∈ PG,

∏
υ∈PG

xυ = 1]


embeds into the affine open set where pIO is non-zero via flow
polynomials.
Let FG,O(J) be the set of flows from IO to J .

FlowG,O

(
pJ
pIO

)
:=

∑
F∈FG,O(J)

wt(F )
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Grassmannian cluster structure

X net
[G] ⊂ Grn−k (Cn) ([RW19])

The network parameters {xυ : υ ∈ PG} form an X cluster.

Mutation is encoded by the quiver Q(G).

Caution: {xυ : υ ∈ PG} is not naturally identified with the X cluster
of XΓ,[s] associated to G.

Remark

All constructions we have described for Grn−k (Cn) apply to Grk (Cn) as
well. In fact, [(Grec

k,n)op] = [Grec
n−k,n].
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n−k,n].



Landau-Ginzburg mirror families for Grassmannians

Gross-Hacking-Keel(-Kontsevich) perspective

Each D[i+1,i+(n−k)] defines a point ordD[i+1,i+(n−k)]
in

(Grn−k (Cn)◦)trop(Z).

As such, it defines a ϑ-function ϑordD[i+1,i+(n−k)]
on the mirror family

Y → TCl(Grn−k(Cn)).

The Landau-Ginzburg potential is W k,n
ϑ :=

n∑
i=1

ϑordD[i+1,i+(n−k)]
.

Scott described UTGrn−k(Cn) as a partial compactification of A by
simply allowing frozen variables to vanish. Using this description, Y
will be viewed as A∨.

If the frozen vertex v associated to p[i+1,i+(n−k)] is a source of QΓ,s,

then ϑordD[i+1,i+(n−k)]

∣∣∣
TN ;sop

= z−ev .
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Landau-Ginzburg mirror families for Grassmannians

Marsh-Rietsch perspective

Marsh-Rietsch potential W k,n
q is a simple expression in terms of

Plücker coordinates on Grk (Cn), where each summand reflects a
quantum product of Schubert cocycles for Grn−k (Cn).

Explicitly, W k,n
q =

n∑
i=1

qδi,n−k
p[i+1,i+k−1]∪{i+k+1}

p[i+1,i+k]
.

The summand
p[i+1,i+k−1]∪{i+k+1}

p[i+1,i+k]
corresponds to the divisor D[i+k+1,i].

Plücker coordinates are A variables, so view Grn−k (Cn) as a
compactification of an X variety and the potential as a function on
an A variety.
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Theorem (Bossinger, Cheung, M, Nájera Chávez)

There is a pair of cluster ensemble lattice maps (p∗, (p∨)∗) with kernels K
and K∨ such that:

K is naturally identified with Cl(Grn−k (Cn))∗ and K∨ with
Cl(Grk (Cn))∗

p descends to an isomorphism p : A/TK → X1∈TK∨ and p∨ to an
isomorphism p∨ : X∨/TK∨ → A∨1∈TK .

p extends to an automorphism of Grn−k (Cn) and p∨ to an
automorphism of Grk (Cn).

(p∨)∗(ϑordD[i+1,i+(n−k)]
) is the summand of W k,n

q=1 corresponding to

p(D[i+1,i+(n−k)]) and p∗(ϑordD[i+1,i+k]
) is the summand of Wn−k,n

q=1

corresponding to p∨(D[i+1,i+k]).

If (k, n) /∈ {(2, 4), (1, n), (n− 1, n)}, this pair of maps is unique and both
automorphisms are given in terms of pullbacks by pJ 7→ pJ−|J |.



Theorem (Bossinger, Cheung, M, Nájera Chávez)
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There is a pair of cluster ensemble lattice maps (p∗, (p∨)∗) with kernels K
and K∨ such that:

K is naturally identified with Cl(Grn−k (Cn))∗ and K∨ with
Cl(Grk (Cn))∗

p descends to an isomorphism p : A/TK → X1∈TK∨ and p∨ to an
isomorphism p∨ : X∨/TK∨ → A∨1∈TK .

p extends to an automorphism of Grn−k (Cn) and p∨ to an
automorphism of Grk (Cn).

(p∨)∗(ϑordD[i+1,i+(n−k)]
) is the summand of W k,n

q=1 corresponding to

p(D[i+1,i+(n−k)]) and p∗(ϑordD[i+1,i+k]
) is the summand of Wn−k,n

q=1

corresponding to p∨(D[i+1,i+k]).

If (k, n) /∈ {(2, 4), (1, n), (n− 1, n)}, this pair of maps is unique and both
automorphisms are given in terms of pullbacks by pJ 7→ pJ−|J |.



Theorem (Bossinger, Cheung, M, Nájera Chávez)
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Example (Potentials on Gr2

(
C5
)◦

)

ϑordD123

∣∣∣
TN ;s

= z−e23 + z−e23−e35

p∨(D123) = D145  W 2,5
q summand p24

p23
p24
p23

= p45
p35

+ p25p34
p23p35

= ze
∗
45−e∗35 + ze

∗
25+e∗34−e∗23−e∗35

p∗(−e23) ∈ e∗25 − e∗35 +N⊥uf and p∗(−e35) = e∗23 + e∗45 − e∗25 − e∗34

With p∗(−e23) = e∗25 + e∗34 − e∗23 − e∗35, we get

p∗(z−e23 + z−e23−e35) = ze
∗
25+e∗34−e∗23−e∗35 + ze

∗
45−e∗35 ,

so p∗(ϑordD123
) = p24

p23
.

Other summands similar.
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Other summands similar.
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Connection to [RW19]

Corollary (Bossinger, Cheung, M, Nájera Chávez)

Identification of superpotential polytopes for Grn−k (Cn):
Fix positive constants ci for i ∈ [1, n]. Let

P =
⋂
i

{
x ∈ (A∨1∈TK

)trop(R) : ϑtrop
D[i+1,i+(n−k)]

(x) ≥ −ci
}

and

Q =
⋂
i

{
a ∈ (X∨/TK∨)

trop
(R) :

(
p[i+1,i+(n−k)]∪{i+k+1}

p[i+1,i+k]

)trop

(a) ≥ −ci+2k

}
.

Then (p∨)trop(Q) = P .



Connection to [RW19]

Rietsch-Williams use X net coordinates to describe their NO bodies and
toric degenerations. So:



Connection to [RW19]

Theorem (Bossinger, Cheung, M, Nájera Chávez)

The Plücker coordinates whose flow polynomials with respect to
((Grec

k,n)op,O) are monomials form precisely the A cluster of Grec
n−k,n.

There is an isomorphism ψ : X net
[(Grec

k,n)op] → X[Grec
n−k,n],1 that is a monomial

transformation which identifies X variables for mutable indices and gives
the following commutative diagram:

X net
[(Grec

k,n)op] A[Grec
n−k,n]/TK

X[Grec
n−k,n],1

Flow(Grec
k,n)op,O

ψ
p[Grec

n−k,n]
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k,n)op,O) are monomials form precisely the A cluster of Grec
n−k,n.

There is an isomorphism ψ : X net
[(Grec

k,n)op] → X[Grec
n−k,n],1 that is a monomial

transformation which identifies X variables for mutable indices and gives
the following commutative diagram:

X net
[(Grec

k,n)op] A[Grec
n−k,n]/TK

X[Grec
n−k,n],1

Flow(Grec
k,n)op,O

ψ
p[Grec

n−k,n]



Connection to [RW19]

Using ψ we can recover the Rietsch-Williams NO bodies and toric
degenerations as well.
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