Grassmannians, plabic graphs, and mirror symmetry for cluster varieties

Timothy Magee

King's College London

Ongoing joint work with Lara Bossinger, Mandy Cheung, and Alfredo Nájera Chávez

KELK KØLK VELKEN EL 1990

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Initial data (Γ, s)

• Lattice N with skew-form $\{\cdot, \cdot\} : N \times N \to \mathbb{Z}$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Initial data (Γ, s)

- Lattice N with skew-form $\{\cdot, \cdot\}: N \times N \to \mathbb{Z}$
- Saturated sublattice $N_{\text{uf}} \subset N$

Initial data $(\overline{\Gamma, \mathbf{s}})$

- Lattice N with skew-form $\{\cdot, \cdot\}: N \times N \to \mathbb{Z}$
- Saturated sublattice $N_{\rm uf}$ ⊂ N
- Index set I with $|I| = \text{rank}(N)$ and subset I_{uf} with $|I_{\text{uf}}| = \text{rank}(N_{\text{uf}})$

KORKARYKERKER POLO

Initial data $(\overline{\Gamma,s})$

 $\sqrt{ }$ \int

 $\overline{\mathcal{L}}$

 $\Gamma \coloneqq$

- \bullet Lattice N with skew-form $\{\,\boldsymbol{\cdot}\,,\,\boldsymbol{\cdot}\,\}:N\times N\to\mathbb{Z}$
- Saturated sublattice $N_{\rm uf} \subset N$
- Index set I with $|I|=\mathrm{rank}\,(N)$ and subset I_{uf} with $|I_{\text{uf}}| = \text{rank}(N_{\text{uf}})$

KELK KØLK VELKEN EL 1990

Initial data $(\overline{\Gamma, \mathbf{s}})$

 $\sqrt{ }$ \int

 $\overline{\mathcal{L}}$

 $\Gamma \coloneqq$

- \bullet Lattice N with skew-form $\{\,\boldsymbol{\cdot}\,,\,\boldsymbol{\cdot}\,\}:N\times N\to\mathbb{Z}$
- Saturated sublattice $N_{\rm uf} \subset N$
- Index set I with $|I|=\mathrm{rank}\,(N)$ and subset I_{uf} with $|I_{\text{uf}}| = \text{rank}(N_{\text{uf}})$
- Labeled basis $\mathbf{s}=(e_i:i\in I)$ of N with $\{e_i:i\in I_{\rm uf}\}$ basis of $N_{\rm uf}$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Initial data $(\overline{\Gamma, \mathbf{s}})$

- Lattice N with skew-form $\{\,\cdot\,,\,\cdot\,\}:N\times N\to\mathbb{Z}$
- Saturated sublattice $N_{\rm uf} \subset N$
- Index set I with $|I|=\mathrm{rank}\,(N)$ and subset I_{uf} with $|I_{\text{uf}}| = \text{rank}(N_{\text{uf}})$
- Labeled basis $\mathbf{s}=(e_i:i\in I)$ of N with $\{e_i:i\in I_{\rm uf}\}$ basis of $N_{\rm uf}$

Cluster tori

 $\Gamma \coloneqq \Big\{$

 $\sqrt{ }$

 $\overline{\mathcal{L}}$

Let $M := \text{Hom}(N, \mathbb{Z})$.

Initial data $(\overline{\Gamma, \mathbf{s}})$

• Lattice N with skew-form $\{\cdot, \cdot\} : N \times N \to \mathbb{Z}$

$$
\bullet\;\; {\sf Saturday}\; {\sf sublattice}\; N_{\rm uf} \subset N
$$

- Index set I with $|I|=\mathrm{rank}\,(N)$ and subset I_{uf} with $|I_{\text{uf}}| = \text{rank}(N_{\text{uf}})$
- Labeled basis $\mathbf{s}=(e_i:i\in I)$ of N with $\{e_i:i\in I_{\rm uf}\}$ basis of $N_{\rm uf}$

Cluster tori

 $\Gamma \coloneqq \Big\{$

 $\sqrt{ }$

 $\overline{\mathcal{L}}$

Let $M := \text{Hom}(N, \mathbb{Z})$.

$$
T_{M; \mathbf{s}} := \mathrm{Spec} \left(\mathbb{C}[N] \right) \qquad T_{N; \mathbf{s}} := \mathrm{Spec} \left(\mathbb{C}[M] \right)
$$

Mutation

For $k \in I_{\text{uf}}$:

$$
\bullet \ \mu_k(\mathbf{s}) := (e_i' : i \in I) \text{ where } e_i' := \begin{cases} e_i + [\{e_i, e_k\}]_+ e_k & \text{for } i \neq k \\ -e_k & \text{for } i = k \end{cases}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Mutation

For $k \in I_{\text{uf}}$:

$$
\bullet \ \mu_k(\mathbf{s}) := (e_i' : i \in I) \text{ where } e_i' := \begin{cases} e_i + [\{e_i, e_k\}]_+ e_k & \text{for } i \neq k \\ -e_k & \text{for } i = k \end{cases}
$$

 \bullet $T_{M; \mathbf{s}} \dashrightarrow T_{M; \mu_k(\mathbf{s})}$ defined in terms of pullback of functions by $\mu_k^*(z^n) = z^n (1 + z^{e_k})^{-\{n, e_k\}}$

KORKARYKERKER OQO

Mutation

For $k \in I_{\text{uf}}$:

$$
\bullet \ \mu_k(\mathbf{s}) := (e_i' : i \in I) \text{ where } e_i' := \begin{cases} e_i + [\{e_i, e_k\}]_+ e_k & \text{for } i \neq k \\ -e_k & \text{for } i = k \end{cases}
$$

- \bullet $T_{M; \mathbf{s}} \dashrightarrow T_{M; \mu_k(\mathbf{s})}$ defined in terms of pullback of functions by $\mu_k^*(z^n) = z^n (1 + z^{e_k})^{-\{n, e_k\}}$
- \bullet $T_{N;\mathbf{s}}$ \rightarrow $T_{N;\mu_k(\mathbf{s})}$ defined in terms of pullback of functions by $\mu_k^*(z^m) = z^m \left(1 + z^{\{e_k, \cdot\}} \right)^{-\langle e_k, m \rangle}$

KORKAR KERKER ST VOOR

Mutation

For $k \in I_{\text{uf}}$:

$$
\bullet \ \mu_k(\mathbf{s}) := (e_i' : i \in I) \text{ where } e_i' := \begin{cases} e_i + [\{e_i, e_k\}]_+ e_k & \text{for } i \neq k \\ -e_k & \text{for } i = k \end{cases}
$$

- \bullet $T_{M; \mathbf{s}} \dashrightarrow T_{M; \mu_k(\mathbf{s})}$ defined in terms of pullback of functions by $\mu_k^*(z^n) = z^n (1 + z^{e_k})^{-\{n, e_k\}}$
- \bullet $T_{N;\mathbf{s}}$ \rightarrow $T_{N;\mu_k(\mathbf{s})}$ defined in terms of pullback of functions by $\mu_k^*(z^m) = z^m \left(1 + z^{\{e_k, \cdot\}} \right)^{-\langle e_k, m \rangle}$

Two flavors of cluster varieties

$$
\mathcal{X}_{\Gamma,[{\bf s}]}:=\bigcup_{{\bf s}'\in [{\bf s}]}T_{M;{\bf s}'}/\sim
$$

$$
\mathcal{A}_{\Gamma,[\mathbf{s}]}:=\bigcup_{\mathbf{s}'\in [\mathbf{s}]}T_{N;\mathbf{s}'}/\sim
$$

Mutation

For $k \in I_{\text{uf}}$:

$$
\bullet \ \mu_k(\mathbf{s}) := (e_i' : i \in I) \text{ where } e_i' := \begin{cases} e_i + [\{e_i, e_k\}]_+ e_k & \text{for } i \neq k \\ -e_k & \text{for } i = k \end{cases}
$$

- \bullet $T_{M; \mathbf{s}} \dashrightarrow T_{M; \mu_k(\mathbf{s})}$ defined in terms of pullback of functions by $\mu_k^*(z^n) = z^n (1 + z^{e_k})^{-\{n, e_k\}}$
- \bullet $T_{N;\mathbf{s}}$ \rightarrow $T_{N;\mu_k(\mathbf{s})}$ defined in terms of pullback of functions by $\mu_k^*(z^m) = z^m \left(1 + z^{\{e_k, \cdot\}} \right)^{-\langle e_k, m \rangle}$

Two flavors of cluster varieties

$$
\mathcal{X}:=\mathcal{X}_{\Gamma, [\mathbf{s}]}:=\bigcup_{\mathbf{s}'\in [\mathbf{s}]}T_{M;\mathbf{s}'}/\sim
$$

$$
\mathcal{A}:=\mathcal{A}_{\Gamma,[{\bf s}]}:=\bigcup_{{\bf s}'\in [{\bf s}]}T_{N;{\bf s}'}/\sim
$$

Definition

Denote the projection $M\to M/N_{\rm uf}^\perp$ by $\pi.$ A cluster ensemble lattice $\mathbf{map}\ \mathsf{is}\ \mathsf{a}\ \mathsf{map}\ p^{*}:N\rightarrow M\ \mathsf{such}\ \mathsf{that}$

KORKARYKERKER OQO

Definition

Denote the projection $M\to M/N_{\rm uf}^\perp$ by $\pi.$ A cluster ensemble lattice $\mathbf{map}\ \mathsf{is}\ \mathsf{a}\ \mathsf{map}\ p^{*}:N\rightarrow M\ \mathsf{such}\ \mathsf{that}$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

$$
\text{\textcolor{blue}{\bullet}} \ \ p^*|_{N_{\rm uf}}: n \mapsto (\{n, \ \cdot \ \} : N \to \mathbb{Z}), \ \text{and}
$$

Definition

Denote the projection $M\to M/N_{\rm uf}^\perp$ by $\pi.$ A cluster ensemble lattice $\mathbf{map}\ \mathsf{is}\ \mathsf{a}\ \mathsf{map}\ p^{*}:N\rightarrow M\ \mathsf{such}\ \mathsf{that}$

KORKARYKERKER OQO

$$
\text{\textcolor{blue}{\bullet}} \ \ p^*|_{N_{\rm uf}}: n \mapsto (\{n, \ \cdot \ \} : N \to \mathbb{Z}), \ \text{and}
$$

2 $\pi \circ p^* : n \mapsto \{n, \cdot\}\big|_{N_{\text{uf}}}.$

Definition

Denote the projection $M\to M/N_{\rm uf}^\perp$ by $\pi.$ A cluster ensemble lattice $\mathbf{map}\ \mathsf{is}\ \mathsf{a}\ \mathsf{map}\ p^{*}:N\rightarrow M\ \mathsf{such}\ \mathsf{that}$

KORKARYKERKER OQO

$$
\textbf{O} \ \ p^*|_{N_{\rm uf}}: n \mapsto (\{n, \text{ }\cdot\text{ } \} : N \to \mathbb{Z}), \text{ and}
$$

$$
\bullet \ \pi \circ p^* : n \mapsto \{n, \ \cdot \ \} |_{N_{\text{uf}}}.
$$

Observe: Cluster ensemble maps commute with mutation.

Denote the projection $M\to M/N_{\rm uf}^\perp$ by $\pi.$ A cluster ensemble lattice $\mathbf{map}\ \mathsf{is}\ \mathsf{a}\ \mathsf{map}\ p^{*}:N\rightarrow M\ \mathsf{such}\ \mathsf{that}$

$$
\text{①} \ \ p^*|_{N_{\rm uf}}: n \mapsto (\{n, \text{ }\cdot\text{ } \} : N \to \mathbb{Z}), \text{ and}
$$

$$
\bullet \ \pi \circ p^* : n \mapsto \{n, \ \cdot \ \} |_{N_{\text{uf}}}.
$$

Observe: Cluster ensemble maps commute with mutation.

Definition

A cluster ensemble lattice map p^{\ast} defines a ${\bf cluster}$ ensemble map $p : A \rightarrow \mathcal{X}$ in terms of pullback of functions.

$$
p^*(z^n) = z^{p^*(n)}
$$

KORKAR KERKER ST VOOR

Cluster varieties V are log Calabi-Yau schemes-

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Cluster varieties V are log Calabi-Yau schemes-

they are endowed with a unique (up to scaling) volume form Ω having at worst a simple pole along any irreducible boundary divisor in any compactification of \mathcal{V} .

KORKARYKERKER OQO

Cluster varieties V are log Calabi-Yau schemes-

they are endowed with a unique (up to scaling) volume form Ω having at worst a simple pole along any irreducible boundary divisor in any compactification of \mathcal{V} .

KORKA SERKER YOUR

Example (Log Calabi-Yau scheme)

Algebraic torus
$$
T = (\mathbb{C}^*)^n
$$
, $\Omega = \frac{dz_1}{z_1} \wedge \cdots \wedge \frac{dz_n}{z_n}$.

Cluster varieties V are log Calabi-Yau schemes-

they are endowed with a unique (up to scaling) volume form Ω having at worst a simple pole along any irreducible boundary divisor in any compactification of \mathcal{V} .

Example (Log Calabi-Yau scheme)

Algebraic torus $T = (\mathbb{C}^*)^n$, $\Omega = \frac{dz_1}{z_1} \wedge \cdots \wedge \frac{dz_n}{z_n}$. If (Y, D) is any toric variety with toric boundary divisor, Ω has a simple pole along each component of D.

KELK KØLK VELKEN EL 1990

Let (\mathcal{V}, Ω) be log Calabi-Yau scheme. A divisorial discrete valuation (ddv) $\nu : \mathbb{C}(\mathcal{V}) \setminus 0 \to \mathbb{Z}$ is a discrete valuation of the form $\nu = \text{ord}_D(\cdot)$ where D is (a positive multiple of) an irreducible effective divisor in a variety birational to V .

KORKAR KERKER ST VOOR

Let (\mathcal{V}, Ω) be log Calabi-Yau scheme. A divisorial discrete valuation (ddv) $\nu : \mathbb{C}(\mathcal{V}) \setminus 0 \to \mathbb{Z}$ is a discrete valuation of the form $\nu = \text{ord}_D(\cdot)$ where D is (a positive multiple of) an irreducible effective divisor in a variety birational to V . The **integral tropicalization of** V is $\mathcal{V}^{\text{trop}}(\mathbb{Z}) \vcentcolon = \{ \nu \text{ ddv} : \nu(\Omega) < 0 \} \cup \{0\}.$

KORKAR KERKER SAGA

Let (\mathcal{V}, Ω) be log Calabi-Yau scheme. A **divisorial discrete valuation** (ddv) $\nu : \mathbb{C}(\mathcal{V}) \setminus 0 \to \mathbb{Z}$ is a discrete valuation of the form $\nu = \text{ord}_D(\cdot)$ where D is (a positive multiple of) an irreducible effective divisor in a variety birational to V . The **integral tropicalization of** V is $\mathcal{V}^{\text{trop}}(\mathbb{Z}) \vcentcolon = \{ \nu \text{ ddv} : \nu(\Omega) < 0 \} \cup \{0\}.$

KORKAR KERKER SAGA

Example (Integral tropicalization)

 T_N^{trop} $N^{\text{trop}}(\mathbb{Z}) = N$

Let (\mathcal{V}, Ω) be log Calabi-Yau scheme. A **divisorial discrete valuation** (ddv) $\nu : \mathbb{C}(\mathcal{V}) \setminus 0 \to \mathbb{Z}$ is a discrete valuation of the form $\nu = \text{ord}_D(\cdot)$ where D is (a positive multiple of) an irreducible effective divisor in a variety birational to V . The **integral tropicalization of** V is $\mathcal{V}^{\text{trop}}(\mathbb{Z}) \vcentcolon = \{ \nu \text{ ddv} : \nu(\Omega) < 0 \} \cup \{0\}.$

YO A 4 4 4 4 5 A 4 5 A 4 D + 4 D + 4 D + 4 D + 4 D + + E + + E + + O + O + + E + + O + + C + + + + +

Example (Integral tropicalization)

 T_N^{trop} $N^{\text{trop}}(\mathbb{Z}) = N$ Recall that toric divisors are indexed by cocharacters.

Let V be an affine log Calabi-Yau with maximal boundary.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Let V be an affine log Calabi-Yau with maximal boundary.

Aside

This means there is some compactification (Y, D) of V such that Ω has a pole along all divisorial components of D and D has a 0-stratum.

KORKARYKERKER OQO

Let V be an affine log Calabi-Yau with maximal boundary. Then

 \bullet we have an algebra $A_{\mathcal{V}}$ with basis $\mathcal{V}^{\operatorname{trop}}(\mathbb{Z}),$ where multiplication is given by broken line counts, and

Aside

This means there is some compactification (Y, D) of V such that Ω has a pole along all divisorial components of D and D has a 0-stratum.

KORKAR KERKER ST VOOR

Let V be an affine log Calabi-Yau with maximal boundary. Then

 \bullet we have an algebra $A_{\mathcal{V}}$ with basis $\mathcal{V}^{\operatorname{trop}}(\mathbb{Z}),$ where multiplication is given by broken line counts, and

Aside

These counts are a tropical version of log Gromov-Witten invariants.

KORKAR KERKER ST VOOR

Let V be an affine log Calabi-Yau with maximal boundary. Then

 \bullet we have an algebra $A_{\mathcal{V}}$ with basis $\mathcal{V}^{\operatorname{trop}}(\mathbb{Z}),$ where multiplication is given by broken line counts, and

$$
\bullet \ \mathrm{Spec}(A_{\mathcal{V}}) = \mathcal{V}^{\vee}.
$$

Aside

These counts are a tropical version of log Gromov-Witten invariants.

KORKARYKERKER OQO

Let V be an affine log Calabi-Yau with maximal boundary. Then

 \bullet we have an algebra $A_{\mathcal{V}}$ with basis $\mathcal{V}^{\operatorname{trop}}(\mathbb{Z}),$ where multiplication is given by broken line counts, and

KORKARYKERKER OQO

$$
\bullet \ \operatorname{Spec}(A_{\mathcal{V}}) = \mathcal{V}^{\vee}.
$$

Aside

This is known as the ϑ -basis, with elements written as ϑ_{ν} for $\nu \in \mathcal{V}^{\text{trop}}(\mathbb{Z}).$

 \bullet If $\mathcal V$ is a cluster variety, this is a corrected form of a conjecture of Fock-Goncharov ([\[FG09\]](#page-133-0)).

KORK EXTERNE PROVIDE

 \bullet If V is a cluster variety, this is a corrected form of a conjecture of Fock-Goncharov ([\[FG09\]](#page-133-0)).

KOD KAR KED KED E YOUN

This is established for "Fock-Goncharov dual" cluster varieties satisfying certain affineness conditions in [\[GHKK18\]](#page-133-3).

- \bullet If V is a cluster variety, this is a corrected form of a conjecture of Fock-Goncharov ([\[FG09\]](#page-133-0)).
- This is established for "Fock-Goncharov dual" cluster varieties satisfying certain affineness conditions in [\[GHKK18\]](#page-133-3).
- For such cluster varieties V , it is said that the full Fock-Goncharov conjecture holds for V .

KOD KAR KED KED E YOUN

- \bullet If V is a cluster variety, this is a corrected form of a conjecture of Fock-Goncharov ([\[FG09\]](#page-133-0)).
- This is established for "Fock-Goncharov dual" cluster varieties satisfying certain affineness conditions in [\[GHKK18\]](#page-133-3).
- For such cluster varieties V , it is said that the full Fock-Goncharov conjecture holds for V .
- Marsh-Scott show that the full Fock-Goncharov conjecture holds for the cluster varieties associated to Grassmannians ([\[MS16\]](#page-133-4)).

KORKAR KERKER ST VOOR
Definition

Given a rational map $f: \mathcal{U} \dashrightarrow \mathcal{V}$ of log Calabi-Yaus with $f^*(\Omega_{\mathcal{V}}) = \Omega_{\mathcal{U}}$, the tropicalization of f is

$$
f^{\text{trop}} : \mathcal{U}^{\text{trop}}(\mathbb{Z}) \to \mathcal{V}^{\text{trop}}(\mathbb{Z})
$$

$$
\upsilon \mapsto \upsilon \circ f^*.
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Definition

Given a rational map $f: \mathcal{U} \dashrightarrow \mathcal{V}$ of log Calabi-Yaus with $f^*(\Omega_{\mathcal{V}}) = \Omega_{\mathcal{U}}$, the tropicalization of f is

$$
f^{\text{trop}} : \mathcal{U}^{\text{trop}}(\mathbb{Z}) \to \mathcal{V}^{\text{trop}}(\mathbb{Z})
$$

$$
\upsilon \mapsto \upsilon \circ f^*.
$$

Assuming the conjecture holds...

Let $f: U \to V$ be a map of affine log Calabi-Yaus with maximal boundary satisfying:

If
$$
R(\vartheta_v : v \in \mathcal{U}^{\text{trop}}(\mathbb{Z}))
$$
 is a relation in $A_{\mathcal{U}}$, then
\n $R(\vartheta_{f^{\text{trop}}(v)} : v \in \mathcal{U}^{\text{trop}}(\mathbb{Z}))$ is a relation in $A_{\mathcal{V}}$.

Definition

Given a rational map $f: \mathcal{U} \dashrightarrow \mathcal{V}$ of log Calabi-Yaus with $f^*(\Omega_{\mathcal{V}}) = \Omega_{\mathcal{U}}$, the tropicalization of f is

$$
f^{\text{trop}} : \mathcal{U}^{\text{trop}}(\mathbb{Z}) \to \mathcal{V}^{\text{trop}}(\mathbb{Z})
$$

$$
\upsilon \mapsto \upsilon \circ f^*.
$$

Assuming the conjecture holds...

Let $f: U \to V$ be a map of affine log Calabi-Yaus with maximal boundary satisfying:

If
$$
R(\vartheta_v : v \in \mathcal{U}^{\text{trop}}(\mathbb{Z}))
$$
 is a relation in $A_{\mathcal{U}}$, then
\n $R(\vartheta_{f^{\text{trop}}(v)} : v \in \mathcal{U}^{\text{trop}}(\mathbb{Z}))$ is a relation in $A_{\mathcal{V}}$.

Then $f^{\operatorname{trop}}: \mathcal{U}^{\operatorname{trop}}(\mathbb{Z}) \to \mathcal{V}^{\operatorname{trop}}(\mathbb{Z})$ determines a map of algebras $A_{\mathcal{U}} \rightarrow A_{\mathcal{V}}$

Definition

Given a rational map $f: \mathcal{U} \dashrightarrow \mathcal{V}$ of log Calabi-Yaus with $f^*(\Omega_{\mathcal{V}}) = \Omega_{\mathcal{U}}$, the tropicalization of f is

$$
f^{\text{trop}} : \mathcal{U}^{\text{trop}}(\mathbb{Z}) \to \mathcal{V}^{\text{trop}}(\mathbb{Z})
$$

$$
\upsilon \mapsto \upsilon \circ f^*.
$$

Assuming the conjecture holds...

Let $f: U \to V$ be a map of affine log Calabi-Yaus with maximal boundary satisfying:

If
$$
R(\vartheta_v : v \in \mathcal{U}^{\text{trop}}(\mathbb{Z}))
$$
 is a relation in $A_{\mathcal{U}}$, then
\n $R(\vartheta_{f^{\text{trop}}(v)} : v \in \mathcal{U}^{\text{trop}}(\mathbb{Z}))$ is a relation in $A_{\mathcal{V}}$.

Then $f^{\operatorname{trop}}: \mathcal{U}^{\operatorname{trop}}(\mathbb{Z}) \to \mathcal{V}^{\operatorname{trop}}(\mathbb{Z})$ determines a map of algebras $A_{\mathcal{U}} \rightarrow A_{\mathcal{V}}$, and so a map of schemes $f^{\vee}: \mathcal{V}^{\vee} \rightarrow \mathcal{U}^{\vee}$.

Proposition (Bossinger, Cheung, M, Nájera Chávez)

Assume the full Fock-Goncharov conjecture holds for A and X and let p be any cluster ensemble map.

KORKARYKERKER POLO

Proposition (Bossinger, Cheung, M, Nájera Chávez)

Assume the full Fock-Goncharov conjecture holds for A and X and let p be any cluster ensemble map.

KORKAR KERKER ST VOOR

If $R\left(\vartheta_a:a\in\mathcal{A}^{\mathrm{trop}}(\mathbb{Z})\right)$ is a relation in $A_\mathcal{A}$, then $R\left(\vartheta_{p^{\text{trop}}(a)} : a \in \mathcal{A}^{\text{trop}}(\mathbb{Z})\right)$ is a relation in $A_\mathcal{X}.$

Proposition (Bossinger, Cheung, M, Nájera Chávez)

Assume the full Fock-Goncharov conjecture holds for A and $\mathcal X$ and let p be any cluster ensemble map.

- If $R\left(\vartheta_a:a\in\mathcal{A}^{\mathrm{trop}}(\mathbb{Z})\right)$ is a relation in $A_\mathcal{A}$, then $R\left(\vartheta_{p^{\text{trop}}(a)} : a \in \mathcal{A}^{\text{trop}}(\mathbb{Z})\right)$ is a relation in $A_\mathcal{X}.$
- There is a choice of cluster structure for \mathcal{A}^\vee and \mathcal{X}^\vee such that $p^\vee:\mathcal X^\vee\to \mathcal A^\vee$ is again a cluster ensemble map.

KORKAR KERKER DRAM

In skew symmetric type, relevant choice of cluster structure is associated to the **chiral dual** initial data $(\Gamma^{\mathrm{op}}, \mathbf{s}^{\mathrm{op}})$:

In skew symmetric type, relevant choice of cluster structure is associated to the **chiral dual** initial data $(\Gamma^{\mathrm{op}}, \mathbf{s}^{\mathrm{op}})$:

KORKARYKERKER POLO

 $N_{\Gamma^{op}} = N_{\Gamma}$, with skew-form $\{\cdot, \cdot\}_{\Gamma^{op}} = -\{\cdot, \cdot\}_{\Gamma}$

In skew symmetric type, relevant choice of cluster structure is associated to the **chiral dual** initial data $(\Gamma^{\mathrm{op}}, \mathbf{s}^{\mathrm{op}})$:

KORKARYKERKER POLO

 $N_{\Gamma^{op}} = N_{\Gamma}$, with skew-form $\{\cdot, \cdot\}_{\Gamma^{op}} = -\{\cdot, \cdot\}_{\Gamma}$

$$
\bullet\ (N_{\rm uf})_{\Gamma^{\rm op}}=(N_{\rm uf})_{\Gamma}
$$

In skew symmetric type, relevant choice of cluster structure is associated to the **chiral dual** initial data $(\Gamma^{\mathrm{op}}, \mathbf{s}^{\mathrm{op}})$:

KORKARYKERKER POLO

 $N_{\Gamma^{op}} = N_{\Gamma}$, with skew-form $\{\cdot, \cdot\}_{\Gamma^{op}} = -\{\cdot, \cdot\}_{\Gamma}$

$$
\bullet\,\left(N_{\mathrm{uf}}\right)_{\Gamma^{\mathrm{op}}}=\left(N_{\mathrm{uf}}\right)_{\Gamma}
$$

$$
\bullet\ I_{\Gamma^{\operatorname{op}}} = I_{\Gamma}\ \text{and}\ (I_{\operatorname{uf}})_{\Gamma^{\operatorname{op}}} = (I_{\operatorname{uf}})_{\Gamma}
$$

In skew symmetric type, relevant choice of cluster structure is associated to the **chiral dual** initial data $(\Gamma^{\mathrm{op}}, \mathbf{s}^{\mathrm{op}})$:

KORKAR KERKER ST VOOR

- $N_{\Gamma^{op}} = N_{\Gamma}$, with skew-form $\{\cdot, \cdot\}_{\Gamma^{op}} = -\{\cdot, \cdot\}_{\Gamma}$
- $(N_{\text{uf}})_{\text{Top}} = (N_{\text{uf}})_{\Gamma}$

$$
\bullet\ I_{\Gamma^{\operatorname{op}}} = I_{\Gamma}\ \text{and}\ (I_{\operatorname{uf}})_{\Gamma^{\operatorname{op}}} = (I_{\operatorname{uf}})_{\Gamma}
$$

$$
\bullet \ \mathbf{s}^{op} = \mathbf{s}
$$

In skew symmetric type, relevant choice of cluster structure is associated to the **chiral dual** initial data $(\Gamma^{\mathrm{op}}, \mathbf{s}^{\mathrm{op}})$:

KORKARYKERKER POLO

 $N_{\Gamma^{op}} = N_{\Gamma}$, with skew-form $\{\cdot, \cdot\}_{\Gamma^{op}} = -\{\cdot, \cdot\}_{\Gamma}$

$$
\bullet\ (N_{\rm uf})_{\Gamma^{\rm op}}=(N_{\rm uf})_{\Gamma}
$$

$$
\bullet\ I_{\Gamma^{\operatorname{op}}} = I_{\Gamma}\ \text{and}\ (I_{\operatorname{uf}})_{\Gamma^{\operatorname{op}}} = (I_{\operatorname{uf}})_{\Gamma}
$$

$$
\bullet \ \mathbf{s}^{op} = \mathbf{s}
$$

Then:

In skew symmetric type, relevant choice of cluster structure is associated to the **chiral dual** initial data $(\Gamma^{\mathrm{op}}, \mathbf{s}^{\mathrm{op}})$:

KORKARYKERKER POLO

- $N_{\Gamma^{op}} = N_{\Gamma}$, with skew-form $\{\cdot, \cdot\}_{\Gamma^{op}} = -\{\cdot, \cdot\}_{\Gamma}$
- $(N_{\text{uf}})_{\text{Top}} = (N_{\text{uf}})_{\Gamma}$

$$
\bullet\ I_{\Gamma^{\operatorname{op}}} = I_{\Gamma}\ \text{and}\ (I_{\operatorname{uf}})_{\Gamma^{\operatorname{op}}} = (I_{\operatorname{uf}})_{\Gamma}
$$

$$
\bullet \ \mathbf{s}^{op} = \mathbf{s}
$$

Then:

$$
\bullet\ \mathcal{X}^{\vee}=\mathcal{A}_{\Gamma^{\rm op},[{\bf s}^{\rm op}]}
$$

In skew symmetric type, relevant choice of cluster structure is associated to the **chiral dual** initial data $(\Gamma^{\mathrm{op}}, \mathbf{s}^{\mathrm{op}})$:

KORKARYKERKER POLO

- $N_{\Gamma^{op}} = N_{\Gamma}$, with skew-form $\{\cdot, \cdot\}_{\Gamma^{op}} = -\{\cdot, \cdot\}_{\Gamma}$
- $(N_{\text{uf}})_{\text{Top}} = (N_{\text{uf}})_{\Gamma}$

$$
\bullet\ I_{\Gamma^{\operatorname{op}}} = I_{\Gamma}\ \text{and}\ (I_{\operatorname{uf}})_{\Gamma^{\operatorname{op}}} = (I_{\operatorname{uf}})_{\Gamma}
$$

$$
\bullet \ \mathbf{s}^{op} = \mathbf{s}
$$

Then:

$$
\begin{array}{c}\bullet\ \mathcal{X}^{\vee}=\mathcal{A}_{\Gamma^{\mathrm{op}},[\mathbf{s}^{\mathrm{op}}]}\\ \bullet\ \mathcal{A}^{\vee}=\mathcal{X}_{\Gamma^{\mathrm{op}},[\mathbf{s}^{\mathrm{op}}]} \end{array}
$$

In skew symmetric type, relevant choice of cluster structure is associated to the **chiral dual** initial data $(\Gamma^{\mathrm{op}}, \mathbf{s}^{\mathrm{op}})$:

KORKAR KERKER ST VOOR

- $N_{\Gamma^{op}} = N_{\Gamma}$, with skew-form $\{\cdot, \cdot\}_{\Gamma^{op}} = -\{\cdot, \cdot\}_{\Gamma}$
- $(N_{\text{uf}})_{\text{Top}} = (N_{\text{uf}})_{\Gamma}$

$$
\bullet\ \ I_{\Gamma^{\operatorname{op}}} = I_{\Gamma} \text{ and } (I_{\operatorname{uf}})_{\Gamma^{\operatorname{op}}} = (I_{\operatorname{uf}})_{\Gamma}
$$

$$
\bullet \ \mathbf{s}^{op} = \mathbf{s}
$$

Then:

 $\mathcal{X}^{\vee}=\mathcal{A}_{\Gamma^{\mathrm{op}},[\mathbf{s}^{\mathrm{op}}]}$ $\mathcal{A}^{\vee}=\mathcal{X}_{\Gamma^{\mathrm{op}}, {\left[\mathbf{s}^{\mathrm{op}}\right]}}$ $(p^{\vee})^* : n \mapsto (p^*)^*(n)$

Plabic graphs for $\operatorname{Gr}_{n-k}(\mathbb{C}^n)$ ([\[Pos06\]](#page-133-0), [\[RW19\]](#page-133-1))

 \bullet A plabic graph G is an undirected graph drawn on a disk with cyclically ordered boundary vertices $(1, \dots, n)$, and each internal vertex either black or white.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Plabic graphs for $\operatorname{Gr}_{n-k}(\mathbb{C}^n)$ ([\[Pos06\]](#page-133-0), [\[RW19\]](#page-133-1))

- A plabic graph G is an undirected graph drawn on a disk with cyclically ordered boundary vertices $(1, \dots, n)$, and each internal vertex either black or white.
- The ${\sf trip} \; T_i$ is the path from i to some boundary vertex $\pi_G(i)$ consisting of maximal right turns at black vertices and maximal left turns at white vertices.

KORKAR KERKER ST VOOR

Plabic graphs for $\operatorname{Gr}_{n-k}(\mathbb{C}^n)$ ([\[Pos06\]](#page-133-0), [\[RW19\]](#page-133-1))

- \bullet A plabic graph G is an undirected graph drawn on a disk with cyclically ordered boundary vertices $(1, \dots, n)$, and each internal vertex either black or white.
- The ${\sf trip} \; T_i$ is the path from i to some boundary vertex $\pi_G(i)$ consisting of maximal right turns at black vertices and maximal left turns at white vertices.
- **If** G is a "reduced" plabic graph and $\pi_G(i) = i + (n k)$ for all i "G is of $\textsf{type}\,\,\pi_{k,n}$ "— then the trips assign Plücker labels in $\binom{[n]}{n-1}$ $\binom{[n]}{n-k}$ to each face as illustrated in the following example.

KORKAR KERKER SAGA

Grassmannian cluster structure

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Grassmannian cluster structure

The corresponding Plücker coordinates form a cluster in Scott's A -cluster structure of $\mathrm{UT}_{\mathrm{Gr}_{n-k}({\mathbb C}^n)} \, \hat{ } \, := \mathrm{UT}_{\mathrm{Gr}_{n-k}({\mathbb C}^n)} \setminus D.$ Here,

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

The corresponding Plücker coordinates form a cluster in Scott's A -cluster structure of $\mathrm{UT}_{\mathrm{Gr}_{n-k}({\mathbb C}^n)} \, \hat{ } \, := \mathrm{UT}_{\mathrm{Gr}_{n-k}({\mathbb C}^n)} \setminus D.$ Here,

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

•
$$
D = \sum_{i=1}^{n} D_{[i+1,i+(n-k)]}
$$
, where

The corresponding Plücker coordinates form a cluster in Scott's A -cluster structure of $\mathrm{UT}_{\mathrm{Gr}_{n-k}({\mathbb C}^n)} \, \hat{ } \, := \mathrm{UT}_{\mathrm{Gr}_{n-k}({\mathbb C}^n)} \setminus D.$ Here,

.

KELK KØLK VELKEN EL 1990

\n- $$
D = \sum_{i=1}^{n} D_{[i+1,i+(n-k)]}
$$
, where
\n- $D_J := \{ x \in \text{UT}_{\text{Gr}_{n-k}(\mathbb{C}^n)} : p_J(x) = 0 \}$
\n

The corresponding Plücker coordinates form a cluster in Scott's A-cluster structure of $\mathrm{UT}_{\mathrm{Gr}_{n-k}({\mathbb C}^n)} \, \hat{ } \, := \mathrm{UT}_{\mathrm{Gr}_{n-k}({\mathbb C}^n)} \setminus D.$ Here,

KORKAR KERKER ST VOOR

•
$$
D = \sum_{i=1}^{n} D_{[i+1, i+(n-k)]}
$$
, where

$$
\bullet \ D_J := \big\{ x \in \mathrm{UT}_{\mathrm{Gr}_{n-k}(\mathbb{C}^n)} : p_J(x) = 0 \big\}.
$$

The skew form and labeled basis are encoded in a quiver $Q(G)$:

A cluster structure ([\[Sco06\]](#page-133-2))

The corresponding Plücker coordinates form a cluster in Scott's A-cluster structure of $\mathrm{UT}_{\mathrm{Gr}_{n-k}({\mathbb C}^n)} \, \hat{ } \, := \mathrm{UT}_{\mathrm{Gr}_{n-k}({\mathbb C}^n)} \setminus D.$ Here,

KORKAR KERKER ST VOOR

$$
\bullet \ \ D=\sum_{i=1}^nD_{[i+1,i+(n-k)]}, \ \text{where}
$$

$$
\bullet \ D_J := \big\{ x \in \mathrm{UT}_{\mathrm{Gr}_{n-k}(\mathbb{C}^n)} : p_J(x) = 0 \big\}.
$$

The skew form and labeled basis are encoded in a quiver $Q(G)$:

$$
\bullet \ \{e_i,e_j\} = \# \ \{ \text{ arrows } \bullet_i \to \bullet_j\} - \# \ \{ \text{ arrows } \bullet_j \to \bullet_i\}
$$

The corresponding Plücker coordinates form a cluster in Scott's A -cluster structure of $\mathrm{UT}_{\mathrm{Gr}_{n-k}({\mathbb C}^n)} \, \hat{ } \, := \mathrm{UT}_{\mathrm{Gr}_{n-k}({\mathbb C}^n)} \setminus D.$ Here,

KORKAR KERKER ST VOOR

•
$$
D = \sum_{i=1}^{n} D_{[i+1, i+(n-k)]}
$$
, where

$$
\bullet \ D_J := \big\{ x \in \mathrm{UT}_{\mathrm{Gr}_{n-k}(\mathbb{C}^n)} : p_J(x) = 0 \big\}.
$$

The skew form and labeled basis are encoded in a quiver $Q(G)$:

$$
\bullet \ \{e_i,e_j\} = \#\{\ \text{arrows } \bullet_i \to \bullet_j\} - \#\{\ \text{arrows } \bullet_j \to \bullet_i\}
$$

 $Q(G)$ is constructed as in the following example:

Example $\left(G_{4,9}^{\rm rec} \right)$

Let G^{op} be the plabic graph obtained by swapping colors of all internal vertices of G .

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Let G^{op} be the plabic graph obtained by swapping colors of all internal vertices of G .

If G is a reduced plabic graph of type $\pi_{k,n}$, then G^{op} is a reduced plabic graph of type $\pi_{n-k,n}$.

KORK EXTERNE PROVIDE

Let G^{op} be the plabic graph obtained by swapping colors of all internal vertices of G.

If G is a reduced plabic graph of type $\pi_{k,n}$, then G^{op} is a reduced plabic graph of type $\pi_{n-k,n}$.

KORKAR KERKER ST VOOR

We obtain an ${\mathcal A}$ cluster in $\mathrm{UT}_{\mathrm{Gr}_k(\mathbb{C}^n)}.$

Let G^{op} be the plabic graph obtained by swapping colors of all internal vertices of G.

- If G is a reduced plabic graph of type $\pi_{k,n}$, then G^{op} is a reduced plabic graph of type $\pi_{n-k,n}$.
- We obtain an ${\mathcal A}$ cluster in $\mathrm{UT}_{\mathrm{Gr}_k(\mathbb{C}^n)}.$
- The Plücker indices associated to the faces of G and G^{op} are related by $J \mapsto \pi_G(J)^c$.

KORKAR KERKER ST VOOR

Let G^{op} be the plabic graph obtained by swapping colors of all internal vertices of G.

- If G is a reduced plabic graph of type $\pi_{k,n}$, then G^{op} is a reduced plabic graph of type $\pi_{n-k,n}$.
- We obtain an ${\mathcal A}$ cluster in $\mathrm{UT}_{\mathrm{Gr}_k(\mathbb{C}^n)}.$
- \bullet The Plücker indices associated to the faces of G and $G^{\rm op}$ are related by $J \mapsto \pi_G(J)^c$.

KORKAR KERKER ST VOOR

We have $Q(G)^\text{op} = Q(G^\text{op})$ – so $(\Gamma, \mathbf{s}) \mapsto (\Gamma^\text{op}, \mathbf{s}^\text{op}).$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Example $\left((G_{4,9}^\textrm{rec})^\textrm{op} \right)$

Two X -cluster structures

If ${\cal A}_{\Gamma,[{\bf s}]}$ is the ${\cal A}$ -cluster variety in $\mathrm{UT}_{\mathrm{Gr}_{n-k}({\mathbb C}^n)},$ then the same initial data determines a cluster variety $\mathcal{X}_{\Gamma,[\mathbf{s}]}$.

KELK KØLK VELKEN EL 1990
Two X -cluster structures

- If ${\cal A}_{\Gamma,[{\bf s}]}$ is the ${\cal A}$ -cluster variety in $\mathrm{UT}_{\mathrm{Gr}_{n-k}({\mathbb C}^n)},$ then the same initial data determines a cluster variety $\mathcal{X}_{\Gamma,[\mathbf{s}]}$.
- A plabic graph G of type $\pi_{k,n}$ also determines an $\mathcal X$ variety $\mathcal X_{[G]}^{\mathrm{net}}$ explicitly embedded in $\mathrm{Gr}_{n-k}\left(\mathbb{C}^n\right)$ in terms of *network parameters*.

KID KA KERKER E VOOR

• A perfect orientation O of a plabic graph G is an orientation of its edges such that every black internal vertex has exactly one outgoing edge and every white internal vertex has exactly one incoming edge.

- A perfect orientation $\mathcal O$ of a plabic graph G is an orientation of its edges such that every black internal vertex has exactly one outgoing edge and every white internal vertex has exactly one incoming edge.
- If G is of type $\pi_{k,n}$, then $n-k$ boundary vertices of (G, O) will be sources and the remaining k sinks. Call the source set $I_{\mathcal{O}}$.

KORKAR KERKER ST VOOR

- A perfect orientation O of a plabic graph G is an orientation of its edges such that every black internal vertex has exactly one outgoing edge and every white internal vertex has exactly one incoming edge.
- If G is of type $\pi_{k,n}$, then $n k$ boundary vertices of (G, O) will be sources and the remaining k sinks. Call the source set I_{Ω} .
- A flow from $I_{\mathcal{O}}$ to $J \in \binom{[n]}{n-1}$ $\binom{[n]}{n-k}$ is a vertex-disjoint collection of directed paths with sources $I_{\mathcal{O}} \setminus (I_{\mathcal{O}} \cap J)$ and targets $J \setminus (I_{\mathcal{O}} \cap J)$.

- A perfect orientation $\mathcal O$ of a plabic graph G is an orientation of its edges such that every black internal vertex has exactly one outgoing edge and every white internal vertex has exactly one incoming edge.
- If G is of type $\pi_{k,n}$, then $n k$ boundary vertices of (G, O) will be sources and the remaining k sinks. Call the source set I_{Ω} .
- A flow from $I_{\mathcal{O}}$ to $J \in \binom{[n]}{n-1}$ $\binom{[n]}{n-k}$ is a vertex-disjoint collection of directed paths with sources $I_{\mathcal{O}} \setminus (I_{\mathcal{O}} \cap J)$ and targets $J \setminus (I_{\mathcal{O}} \cap J)$.
- To each face v of G , associate a network parameter x_v .

- A perfect orientation O of a plabic graph G is an orientation of its edges such that every black internal vertex has exactly one outgoing edge and every white internal vertex has exactly one incoming edge.
- If G is of type $\pi_{k,n}$, then $n k$ boundary vertices of (G, O) will be sources and the remaining k sinks. Call the source set $I_{\mathcal{O}}$.
- A flow from $I_{\mathcal{O}}$ to $J \in \binom{[n]}{n-1}$ $\binom{[n]}{n-k}$ is a vertex-disjoint collection of directed paths with sources $I_{\mathcal{O}} \setminus (I_{\mathcal{O}} \cap J)$ and targets $J \setminus (I_{\mathcal{O}} \cap J)$.
- **•** To each face v of G , associate a **network parameter** x_v .
- Let the weight of a path ρ , denoted $wt(\rho)$, be the product of all network parameters x_v for v a face to the left of ρ , and let the weight of a flow $F-{\rm wt}(F)$ – be the product of the weights of all paths ρ in F .

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ │ 唐

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Denote the set of faces of G by P_G .

$\mathcal{X}_{[G]}^{\text{net}} \subset \text{Gr}_{n-k}\left(\mathbb{C}^n\right)$ ([\[RW19\]](#page-133-0))

Denote the set of faces of G by P_G . For each (G, O) of type $\pi_{k,n}$, the torus

$$
T_{G,\mathcal{O}} := \operatorname{Spec} \left(\mathbb{C}[x_v^{\pm 1} : v \in \mathcal{P}_G, \prod_{v \in \mathcal{P}_G} x_v = 1] \right)
$$

embeds into the affine open set where $p_{I\phi}$ is non-zero via <code>flow</code> polynomials.

$\mathcal{X}_{[G]}^{\text{net}} \subset \text{Gr}_{n-k}\left(\mathbb{C}^n\right)$ ([\[RW19\]](#page-133-0))

Denote the set of faces of G by P_G . For each (G, O) of type $\pi_{k,n}$, the torus

$$
T_{G,\mathcal{O}} := \mathrm{Spec} \left(\mathbb{C}[x_v^{\pm 1} : v \in \mathcal{P}_G, \prod_{v \in \mathcal{P}_G} x_v = 1] \right)
$$

embeds into the affine open set where $p_{I\phi}$ is non-zero via <code>flow</code> polynomials.

Let $\mathcal{F}_{G,\mathcal{O}}(J)$ be the set of flows from $I_{\mathcal{O}}$ to J .

$$
\mathrm{Flow}_{G,\mathcal{O}}\left(\frac{p_J}{p_{I_{\mathcal{O}}}}\right) := \sum_{F \in \mathcal{F}_{G,\mathcal{O}}(J)} \mathrm{wt}(F)
$$

 $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ \equiv 2990

Grassmannian cluster structure

Example

• The network parameters $\{x_v : v \in \mathcal{P}_G\}$ form an X cluster.

• The network parameters $\{x_v : v \in \mathcal{P}_G\}$ form an X cluster.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

• Mutation is encoded by the quiver $Q(G)$.

- The network parameters $\{x_v : v \in \mathcal{P}_G\}$ form an X cluster.
- Mutation is encoded by the quiver $Q(G)$.
- Caution: $\{x_v : v \in \mathcal{P}_G\}$ is not naturally identified with the X cluster of $\mathcal{X}_{\Gamma,[s]}$ associated to G .

KORKAR KERKER ST VOOR

- The network parameters $\{x_v : v \in \mathcal{P}_G\}$ form an X cluster.
- Mutation is encoded by the quiver $Q(G)$.
- Caution: $\{x_v : v \in \mathcal{P}_G\}$ is not naturally identified with the X cluster of $\mathcal{X}_{\Gamma,[s]}$ associated to G .

Remark

All constructions we have described for $\mathrm{Gr}_{n-k}\left(\mathbb{C}^n\right)$ apply to $\mathrm{Gr}_k\left(\mathbb{C}^n\right)$ as well. In fact, $[(G_{k,n}^\mathrm{rec})^\mathrm{op}]=[G_{n-k,n}^\mathrm{rec}].$

KORKAR KERKER SAGA

Gross-Hacking-Keel(-Kontsevich) perspective

• Each $D_{[i+1,i+(n-k)]}$ defines a point $\text{ord}_{D_{[i+1,i+(n-k)]}}$ in $(\mathrm{Gr}_{n-k}(\mathbb{C}^n)^{\circ})^{\operatorname{trop}}(\mathbb{Z}).$

KORKARYKERKER POLO

Gross-Hacking-Keel(-Kontsevich) perspective

- Each $D_{[i+1,i+(n-k)]}$ defines a point $\text{ord}_{D_{[i+1,i+(n-k)]}}$ in $(\mathrm{Gr}_{n-k}(\mathbb{C}^n)^{\circ})^{\operatorname{trop}}(\mathbb{Z}).$
- As such, it defines a ϑ -function $\vartheta_{\mathrm{ord}_{D_{[i+1,i+(n-k)]}}}$ on the mirror family $\mathcal{Y} \to T_{\mathrm{Cl}(\mathrm{Gr}_{n-k}(\mathbb{C}^n))}.$

KORKAR KERKER ST VOOR

Gross-Hacking-Keel(-Kontsevich) perspective

- Each $D_{[i+1,i+(n-k)]}$ defines a point $\text{ord}_{D_{[i+1,i+(n-k)]}}$ in $(\mathrm{Gr}_{n-k}(\mathbb{C}^n)^{\circ})^{\operatorname{trop}}(\mathbb{Z}).$
- As such, it defines a ϑ -function $\vartheta_{\mathrm{ord}_{D_{[i+1,i+(n-k)]}}}$ on the mirror family $\mathcal{Y} \to T_{\mathrm{Cl}(\mathrm{Gr}_{n-k}(\mathbb{C}^n))}.$
- The Landau-Ginzburg potential is $W^{k,n}_{\vartheta}$ $\sigma^{k,n}_\vartheta := \sum^n$ $\sum_{i=1} \vartheta_{\operatorname{ord}_{D_{[i+1,i+(n-k)]}}}.$

Gross-Hacking-Keel(-Kontsevich) perspective

- Each $D_{[i+1,i+(n-k)]}$ defines a point $\text{ord}_{D_{[i+1,i+(n-k)]}}$ in $(\mathrm{Gr}_{n-k}(\mathbb{C}^n)^{\circ})^{\operatorname{trop}}(\mathbb{Z}).$
- As such, it defines a ϑ -function $\vartheta_{\mathrm{ord}_{D_{[i+1,i+(n-k)]}}}$ on the mirror family $\mathcal{Y} \to T_{\mathrm{Cl}(\mathrm{Gr}_{n-k}(\mathbb{C}^n))}.$
- The Landau-Ginzburg potential is $W^{k,n}_{\vartheta}$ $\sigma^{k,n}_\vartheta := \sum^n$ $\sum_{i=1} \vartheta_{\operatorname{ord}_{D_{[i+1,i+(n-k)]}}}.$
- Scott described $UT_{\text{Gr}_{n-k}(\mathbb{C}^n)}$ as a partial compactification of A by simply allowing frozen variables to vanish. Using this description, \mathcal{Y} will be viewed as \mathcal{A}^{\vee} .

Gross-Hacking-Keel(-Kontsevich) perspective

- Each $D_{[i+1,i+(n-k)]}$ defines a point $\text{ord}_{D_{[i+1,i+(n-k)]}}$ in $(\mathrm{Gr}_{n-k}(\mathbb{C}^n)^{\circ})^{\operatorname{trop}}(\mathbb{Z}).$
- As such, it defines a ϑ -function $\vartheta_{\mathrm{ord}_{D_{[i+1,i+(n-k)]}}}$ on the mirror family $\mathcal{Y} \to T_{\mathrm{Cl}(\mathrm{Gr}_{n-k}(\mathbb{C}^n))}.$
- The Landau-Ginzburg potential is $W^{k,n}_{\vartheta}$ $\sigma^{k,n}_\vartheta := \sum^n$ $\sum_{i=1} \vartheta_{\operatorname{ord}_{D_{[i+1,i+(n-k)]}}}.$
- Scott described $UT_{\text{Gr}_{n-k}(\mathbb{C}^n)}$ as a partial compactification of A by simply allowing frozen variables to vanish. Using this description, $\mathcal Y$ will be viewed as A^{\vee} .
- **If the frozen vertex v associated to** $p_{[i+1,i+(n-k)]}$ is a source of $Q_{\Gamma, \mathbf{s}}$, then $\vartheta_{\mathrm{ord}_{D_{[i+1,i+(n-k)]}}}\Big|_{T_{N;\mathbf{s}^{\mathrm{op}}}}$ $= z^{-e_v}.$

KORKAR KERKER ST VOOR

Marsh-Rietsch potential $W^{k,n}_{q}$ is a simple expression in terms of Plücker coordinates on $\mathrm{Gr}_k\left({\mathbb C}^n\right)$, where each summand reflects a quantum product of Schubert cocycles for $\mathrm{Gr}_{n-k}\left(\mathbb{C}^n\right)$.

KOD KOD KED KED E VOOR

Marsh-Rietsch potential $W^{k,n}_{q}$ is a simple expression in terms of Plücker coordinates on $\mathrm{Gr}_k\left({\mathbb C}^n\right)$, where each summand reflects a quantum product of Schubert cocycles for $\mathrm{Gr}_{n-k}\left(\mathbb{C}^n\right)$.

.

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

• Explicitly,
$$
W_q^{k,n} = \sum_{i=1}^n q^{\delta_{i,n-k}} \frac{p_{[i+1,i+k-1]\cup \{i+k+1\}}}{p_{[i+1,i+k]}}
$$

Marsh-Rietsch potential $W^{k,n}_{q}$ is a simple expression in terms of Plücker coordinates on $\mathrm{Gr}_k\left({\mathbb C}^n\right)$, where each summand reflects a quantum product of Schubert cocycles for $\mathrm{Gr}_{n-k}\left(\mathbb{C}^n\right)$.

\n- Explicitly,
$$
W_q^{k,n} = \sum_{i=1}^n q^{\delta_{i,n-k}} \frac{p_{[i+1,i+k-1]\cup\{i+k+1\}}}{p_{[i+1,i+k]}}
$$
.
\n- The summand $\frac{p_{[i+1,i+k-1]\cup\{i+k+1\}}}{p_{[i+1,i+k]}}$ corresponds to the divisor $D_{[i+k+1,i]}$.
\n

KOD KOD KED KED E VOOR

Marsh-Rietsch potential $W^{k,n}_{q}$ is a simple expression in terms of Plücker coordinates on $\mathrm{Gr}_k\left({\mathbb C}^n\right)$, where each summand reflects a quantum product of Schubert cocycles for $\mathrm{Gr}_{n-k}\left(\mathbb{C}^n\right)$.

• Explicitly,
$$
W_q^{k,n} = \sum_{i=1}^n q^{\delta_{i,n-k}} \frac{p_{[i+1,i+k-1]\cup \{i+k+1\}}}{p_{[i+1,i+k]}}
$$

The summand $\frac{p_{[i+1,i+k-1]\cup \{i+k+1\}}}{p_{[i+1,i+k]}}$ corresponds to the divisor $D_{[i+k+1,i]}.$

.

KID KA KERKER E 1990

Plücker coordinates are $\mathcal A$ variables, so view $\mathrm{Gr}_{n-k} \left(\mathbb C^n \right)$ as a compactification of an X variety and the potential as a function on an A variety.

There is a pair of cluster ensemble lattice maps $(p^*, (p^\vee)^*)$ with kernels K and K^{\vee} such that:

There is a pair of cluster ensemble lattice maps $(p^*, (p^\vee)^*)$ with kernels K and K^{\vee} such that:

KID KA KERKER KID KO

 K is naturally identified with $\mathrm{Cl}(\mathrm{Gr}_{n-k} \, (\mathbb{C}^n))^*$ and K^\vee with $\mathrm{Cl}(\mathrm{Gr}_k\left(\mathbb{C}^n\right))^*$

There is a pair of cluster ensemble lattice maps $(p^*, (p^\vee)^*)$ with kernels K and K^{\vee} such that:

- K is naturally identified with $\mathrm{Cl}(\mathrm{Gr}_{n-k} \, (\mathbb{C}^n))^*$ and K^\vee with $\mathrm{Cl}(\mathrm{Gr}_k\left(\mathbb{C}^n\right))^*$
- p descends to an isomorphism $\overline{p}: \mathcal{A}/T_K \to \mathcal{X}_{\mathbf{1} \in T_{K^\vee}}$ and p^\vee to an isomorphism $\overline{p}^\vee:\mathcal{X}^\vee/T_{K^\vee}\to \mathcal{A}^\vee_{\mathbf{1}\in T_K}.$

KORKAR KERKER SAGA

There is a pair of cluster ensemble lattice maps $(p^*, (p^\vee)^*)$ with kernels K and K^{\vee} such that:

- K is naturally identified with $\mathrm{Cl}(\mathrm{Gr}_{n-k} \, (\mathbb{C}^n))^*$ and K^\vee with $\mathrm{Cl}(\mathrm{Gr}_k\left(\mathbb{C}^n\right))^*$
- p descends to an isomorphism $\overline{p}: \mathcal{A}/T_K \to \mathcal{X}_{\mathbf{1} \in T_{K^\vee}}$ and p^\vee to an isomorphism $\overline{p}^\vee:\mathcal{X}^\vee/T_{K^\vee}\to \mathcal{A}^\vee_{\mathbf{1}\in T_K}.$

KORKAR KERKER SAGA

 \overline{p} extends to an automorphism of $\operatorname{Gr}_{n-k}({\mathbb C}^n)$ and \overline{p}^\vee to an automorphism of $\mathrm{Gr}_k\left(\mathbb{C}^n\right)$.

There is a pair of cluster ensemble lattice maps $(p^*, (p^\vee)^*)$ with kernels K and K^{\vee} such that:

- K is naturally identified with $\mathrm{Cl}(\mathrm{Gr}_{n-k} \, (\mathbb{C}^n))^*$ and K^\vee with $\mathrm{Cl}(\mathrm{Gr}_k\left(\mathbb{C}^n\right))^*$
- p descends to an isomorphism $\overline{p}: \mathcal{A}/T_K \to \mathcal{X}_{\mathbf{1} \in T_{K^\vee}}$ and p^\vee to an isomorphism $\overline{p}^\vee:\mathcal{X}^\vee/T_{K^\vee}\to \mathcal{A}^\vee_{\mathbf{1}\in T_K}.$
- \overline{p} extends to an automorphism of $\operatorname{Gr}_{n-k}({\mathbb C}^n)$ and \overline{p}^\vee to an automorphism of $\mathrm{Gr}_k\left(\mathbb{C}^n\right)$.
- $(\overline{p}^\vee)^*(\vartheta_{\mathrm{ord}_{D_{[i+1,i+(n-k)]}}})$ is the summand of $W^{k,n}_{q=1}$ corresponding to $\overline{p}(D_{[i+1,i+(n-k)]})$ and $\overline{p}^*(\vartheta_{\mathrm{ord}_{D_{[i+1,i+k]}}})$ is the summand of $W_{q=1}^{n-k,n}$ $q=1$ corresponding to $\overline{p}^{\vee}(D_{[i+1,i+k]}).$

KORKAR KERKER DRAM

There is a pair of cluster ensemble lattice maps $(p^*, (p^\vee)^*)$ with kernels K and K^{\vee} such that:

- K is naturally identified with $\mathrm{Cl}(\mathrm{Gr}_{n-k} \, (\mathbb{C}^n))^*$ and K^\vee with $\mathrm{Cl}(\mathrm{Gr}_k\left(\mathbb{C}^n\right))^*$
- p descends to an isomorphism $\overline{p}: \mathcal{A}/T_K \to \mathcal{X}_{\mathbf{1} \in T_{K^\vee}}$ and p^\vee to an isomorphism $\overline{p}^\vee:\mathcal{X}^\vee/T_{K^\vee}\to \mathcal{A}^\vee_{\mathbf{1}\in T_K}.$
- \overline{p} extends to an automorphism of $\operatorname{Gr}_{n-k}({\mathbb C}^n)$ and \overline{p}^\vee to an automorphism of $\mathrm{Gr}_k\left(\mathbb{C}^n\right)$.
- $(\overline{p}^\vee)^*(\vartheta_{\mathrm{ord}_{D_{[i+1,i+(n-k)]}}})$ is the summand of $W^{k,n}_{q=1}$ corresponding to $\overline{p}(D_{[i+1,i+(n-k)]})$ and $\overline{p}^*(\vartheta_{\mathrm{ord}_{D_{[i+1,i+k]}}})$ is the summand of $W_{q=1}^{n-k,n}$ $q=1$ corresponding to $\overline{p}^{\vee}(D_{[i+1,i+k]}).$

If $(k, n) \notin \{ (2, 4), (1, n), (n - 1, n) \}$, this pair of maps is unique and both automorphisms are given in terms of pullbacks by $p_J \mapsto p_{J-|J|}.$

KORKAR KERKER DRAM

Example $(k = 3, n = 5)$

KOKK@KKEKKEK E 1990

Example
$$
(k = 3, n = 5)
$$

$$
W_\vartheta^{2,5}=\sum_{i=1}^5\vartheta_{\operatorname{ord}_{D_{[i+1,i+3]}}}
$$

Kロトメ部トメミトメミト ミニのQC

Example
$$
(k = 3, n = 5)
$$

 $\vartheta_{{\rm ord}_{D_{123}}}\Big|_{T_{N;\mathbf{s}}}$ $= z^{-e_{23}} + z^{-e_{23}-e_{35}}$

Example
$$
(k = 3, n = 5)
$$

$$
W^{2,5}_{\vartheta}=\sum_{i=1}^5\vartheta_{{\rm ord}_{D_{[i+1,i+3]}}}
$$

$$
\vartheta_{{\rm ord}_{D_{234}}}\Big|_{T_{N;\mathbf s}}=z^{-e_{34}}
$$
Example
$$
(k = 3, n = 5)
$$

Example
$$
(k = 3, n = 5)
$$

$$
W^{2,5}_{\vartheta}=\sum_{i=1}^5\vartheta_{{\rm ord}_{D_{[i+1,i+3]}}}
$$

K ロ X イロ X K ミ X K ミ X ミ X D V Q (V)

$$
\vartheta_{{\rm ord}_{D_{145}}}\Big|_{T_{N;\mathbf s}}=z^{-e_{15}}
$$

Example
$$
(k = 3, n = 5)
$$

 $\vartheta_{{\rm ord}_{D_{125}}}\big|_{T_{N;\mathbf s}}$ $= z^{-e_{12}} + z^{-e_{12}-e_{25}}$

Example
$$
(k = 3, n = 5)
$$

$$
W_\vartheta^{3,5}=\sum_{i=1}^5\vartheta_{\operatorname{ord}_{D_{[i+1,i+2]}}}
$$

Kロトメ部トメミトメミト ミニのQC

Example
$$
(k = 3, n = 5)
$$

$$
W^{3,5}_\vartheta = \sum_{i=1}^5 \vartheta_{\operatorname{ord}_{D_{[i+1,i+2]}}}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

$$
\vartheta_{\mathrm{ord}_{D_{12}}}\Big|_{T_{N;\mathbf{s}^\mathrm{op}}}=z^{-e_{125}}
$$

Example
$$
(k = 3, n = 5)
$$

Example
$$
(k = 3, n = 5)
$$

K □ K K 레 K K B K K B X X X K H K H X A G W

Example
$$
(k = 3, n = 5)
$$

$$
W^{3,5}_{\vartheta}=\sum_{i=1}^5\vartheta_{{\rm ord}_{D_{[i+1,i+2]}}}
$$

$$
\vartheta_{{\rm ord}_{D_{45}}}\Big|_{T_{N;\mathbf{s}^{\rm op}}} = z^{-e_{345}}
$$

Example
$$
(k = 3, n = 5)
$$

$$
\bullet\ \vartheta_{\mathrm{ord}_{D_{123}}}\Big|_{T_{N;\mathbf s}} = z^{-e_{23}}+z^{-e_{23}-e_{35}}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

•
$$
\vartheta_{\text{ord}_{D_{123}}}\Big|_{T_{N;\mathbf{s}}}=z^{-e_{23}}+z^{-e_{23}-e_{35}}
$$

• $p^{\vee}(D_{123})=D_{145}\leadsto W_q^{2,5}$ summand $\frac{p_{24}}{p_{23}}$

\n- \n
$$
\vartheta_{\text{ord}_{D_{123}}}\Big|_{T_{N;\mathbf{s}}}=z^{-e_{23}}+z^{-e_{23}-e_{35}}
$$
\n
\n- \n $p^{\vee}(D_{123})=D_{145} \leadsto W_q^{2,5}$ summand\n $\frac{p_{24}}{p_{23}}$ \n
\n- \n $\frac{p_{24}}{p_{23}}=\frac{p_{45}}{p_{35}}+\frac{p_{25}p_{34}}{p_{23}p_{35}}=z^{e_{45}^*-e_{35}^*}+z^{e_{25}^*+e_{34}^*-e_{23}^*-e_{35}^*}$ \n
\n

\n- \n
$$
\vartheta_{\text{ord}_{D_{123}}}\Big|_{T_{N;\mathbf{s}}}=z^{-e_{23}}+z^{-e_{23}-e_{35}}
$$
\n
\n- \n $p^{\vee}(D_{123})=D_{145} \leadsto W_q^{2,5}$ summand\n $\frac{p_{24}}{p_{23}}$ \n
\n- \n $\frac{p_{24}}{p_{23}}=\frac{p_{45}}{p_{35}}+\frac{p_{25}p_{34}}{p_{23}p_{35}}=z^{e_{45}^* - e_{35}^*}+z^{e_{25}^* + e_{34}^* - e_{23}^* - e_{35}^*}$ \n
\n- \n $p^*(-e_{23})\in e_{25}^* - e_{35}^*+N_{\text{uf}}^\perp \text{ and } p^*(-e_{35})=e_{23}^*+e_{45}^*-e_{25}^*-e_{34}^*$ \n
\n

\n- \n
$$
\vartheta_{\text{ord}_{D_{123}}}\Big|_{T_{N;\mathbf{s}}}=z^{-e_{23}}+z^{-e_{23}-e_{35}}
$$
\n
\n- \n $p^{\vee}(D_{123})=D_{145} \leadsto W_q^{2,5}$ summand\n $\frac{p_{24}}{p_{23}}$ \n
\n- \n $\frac{p_{24}}{p_{23}}=\frac{p_{45}}{p_{35}}+\frac{p_{25}p_{34}}{p_{23}p_{35}}=z^{e_{45}^*-e_{35}^*}+z^{e_{25}^*+e_{34}^*-e_{23}^*-e_{35}^*}$ \n
\n- \n $p^*(-e_{23})\in e_{25}^* - e_{35}^* + N_{\text{uf}}^\perp$ and\n $p^*(-e_{35})=e_{23}^*+e_{45}^* - e_{25}^* - e_{34}^*$ \n
\n- \n $\text{With } p^*(-e_{23})=e_{25}^*+e_{34}^*-e_{23}^*-e_{35}^*,$ we get\n $p^*(z^{-e_{23}}+z^{-e_{23}-e_{35}})=z^{e_{25}^*+e_{34}^*-e_{23}^*-e_{35}^*}+z^{e_{45}^*-e_{35}^*},$ \n
\n

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

$$
\text{so }p^*(\vartheta_{\mathrm{ord}_{D_{123}}}) = \tfrac{p_{24}}{p_{23}}.
$$

\n- \n
$$
\vartheta_{\text{ord}_{D_{123}}}\Big|_{T_{N;\mathbf{s}}}=z^{-e_{23}}+z^{-e_{23}-e_{35}}
$$
\n
\n- \n $p^{\vee}(D_{123})=D_{145} \leadsto W_4^{2,5}$ summand\n $\frac{p_{24}}{p_{23}}$ \n
\n- \n $\frac{p_{24}}{p_{23}}=\frac{p_{45}}{p_{35}}+\frac{p_{25}p_{34}}{p_{23}p_{35}}=z^{e_{45}^* - e_{35}^*}+z^{e_{25}^* + e_{34}^* - e_{23}^* - e_{35}^*}$ \n
\n- \n $p^*(-e_{23})\in e_{25}^* - e_{35}^* + N_{\text{uf}}^\perp$ and\n $p^*(-e_{35})=e_{23}^*+e_{45}^* - e_{25}^* - e_{34}^*$ \n
\n- \n $\text{With } p^*(-e_{23})=e_{25}^*+e_{34}^* - e_{23}^* - e_{35}^*,$ we get\n $p^*(z^{-e_{23}}+z^{-e_{23}-e_{35}})=z^{e_{25}^*+e_{34}^* - e_{23}^* - e_{35}^*}+z^{e_{45}^* - e_{35}^*},$ \n
\n

so
$$
p^*(\vartheta_{\text{ord}_{D_{123}}}) = \frac{p_{24}}{p_{23}}
$$
.
• Other summands similar.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

$$
\bullet \ \vartheta_{{\rm ord}_{D_{12}}}\Big|_{T_{N;\mathbf{s}^{\rm op}}} = z^{-e_{125}}
$$

$$
\begin{aligned}\n\bullet \ \vartheta_{\text{ord}_{D_{12}}}\Big|_{T_{N;\mathbf{s}^{\text{op}}}} &= z^{-e_{125}}\\
\bullet \ p(D_{12}) &= D_{34} \leadsto \frac{p_{135}}{p_{125}}\n\end{aligned}
$$

•
$$
\vartheta_{\text{ord}_{D_{12}}}\Big|_{T_{N;\text{s}^{\text{op}}}} = z^{-e_{125}}
$$

\n• $p(D_{12}) = D_{34} \leftrightarrow \frac{p_{135}}{p_{125}}$
\n• $(p^{\vee})^*(-e_{125}) \in e_{135}^* + N_{\text{uf}}^{\perp}$

\n- \n
$$
\vartheta_{\text{ord}_{D_{12}}}\Big|_{T_{N;\text{s}^{\text{op}}}} = z^{-e_{125}}
$$
\n
\n- \n $p(D_{12}) = D_{34} \leadsto \frac{p_{135}}{p_{125}}$ \n
\n- \n $(p^{\vee})^*(-e_{125}) \in e_{135}^* + N_{\text{uf}}^{\perp}$ \n
\n- \n $\text{With } (p^{\vee})^*(-e_{125}) = e_{135}^* - e_{125}^*,$ \n we get\n $(p^{\vee})^*(\vartheta_{\text{ord}_{D_{12}}}) = \frac{p_{135}}{p_{125}}.$ \n
\n

\n- \n
$$
\vartheta_{\text{ord}_{D_{12}}}\Big|_{T_{N;\text{s}^{\text{op}}}} = z^{-e_{125}}
$$
\n
\n- \n $p(D_{12}) = D_{34} \leadsto \frac{p_{135}}{p_{125}}$ \n
\n- \n $(p^{\vee})^*(-e_{125}) \in e_{135}^* + N_{\text{uf}}^{\perp}$ \n
\n- \n $\text{With } (p^{\vee})^*(-e_{125}) = e_{135}^* - e_{125}^*$, we get\n $(p^{\vee})^*(\vartheta_{\text{ord}_{D_{12}}}) = \frac{p_{135}}{p_{125}}$ \n
\n- \n $\text{Other summands similar.}$ \n
\n

Corollary (Bossinger, Cheung, M, Nájera Chávez)

Identification of superpotential polytopes for $\mathrm{Gr}_{n-k}\left(\mathbb{C}^n\right)$: Fix positive constants c_i for $i \in [1, n]$. Let

$$
P = \bigcap_{i} \left\{ x \in (\mathcal{A}_{1 \in T_K}^{\vee})^{\operatorname{trop}}(\mathbb{R}) : \vartheta_{D_{[i+1,i+(n-k)]}}^{\operatorname{trop}}(x) \ge -c_i \right\}
$$

and

$$
Q = \bigcap_i \left\{ a \in (\mathcal{X}^\vee / T_{K^\vee})^{\text{trop}}(\mathbb{R}) : \left(\frac{p_{[i+1,i+(n-k)] \cup \{i+k+1\}}}{p_{[i+1,i+k]}} \right)^{\text{trop}} (a) \geq -c_{i+2k} \right\}.
$$

KORKARYKERKER POLO

Then $(\bar{p}^{\vee})^{\text{trop}}(Q) = P$.

Rietsch-Williams use $\mathcal{X}^{\rm net}$ coordinates to describe their NO bodies and toric degenerations. So:

Theorem (Bossinger, Cheung, M, Nájera Chávez)

The Plücker coordinates whose flow polynomials with respect to $((G_{k,n}^\mathrm{rec})^\mathrm{op}, \mathcal{O})$ are monomials form precisely the $\mathcal A$ cluster of $G_{n-k,n}^\mathrm{rec}.$

Theorem (Bossinger, Cheung, M, Nájera Chávez)

The Plücker coordinates whose flow polynomials with respect to $((G_{k,n}^\mathrm{rec})^\mathrm{op}, \mathcal{O})$ are monomials form precisely the $\mathcal A$ cluster of $G_{n-k,n}^\mathrm{rec}.$ There is an isomorphism $\psi:\mathcal X_{[(G_{k,n}^{\rm rec})^{\rm op}]}^{\rm net}\to \mathcal X_{[G_{n-k,n}^{\rm rec}],{\bf 1}}$ that is a monomial transformation which identifies X variables for mutable indices and gives the following commutative diagram:

 200

Using ψ we can recover the Rietsch-Williams NO bodies and toric degenerations as well.

References

- [FG09] Fock and Goncharov, Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. (4) $42(6)$, 865–930 (2009).
- [GHK15a] Gross, Hacking and Keel, Birational geometry of cluster algebras, Algebr. Geom. 2(2), 137–175 (2015).
- [GHK15b] Gross, Hacking and Keel, Mirror symmetry for log Calabi-Yau surfaces I, Publ. Math. Inst. Hautes Études Sci. 122, 65-168 (2015).
- [GHKK18] Gross, Hacking, Keel and Kontsevich, Canonical bases for cluster algebras, J. Amer. Math. Soc. $31(2)$, 497-608 (2018).
	- [MS16] Marsh and Scott, Twists of Plücker coordinates as dimer partition functions, Comm. Math. Phys. 341(3), 821–884 (2016).
	- [Pos06] Postnikov, Total positivity, Grassmannians, and networks, arXiv preprint arXiv:math/0609764 [math.CO] (2006).
	- [RW19] Rietsch and Williams, Newton-Okounkov bodies, cluster duality, and mirror symmetry for Grassmannians, Duke Math. J. 168(18), 3437–3527 (2019).
	- [Sco06] Scott, Grassmannians and cluster algebras, Proc. London Math. Soc. (3) **92** (2) , 345–380 (2006) . 4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +