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Initial data (T, s)
o Lattice NV with skew-form {-, -} : N x N — Z
@ Saturated sublattice Ny C N
@ Index set I with |I| = rank (V) and subset I,;s with
|Tus| = rank (Nyf)
@ Labeled basis s = (e; : i € I) of N with {e; : i € I} basis of
Nyt

Cluster tori
Let M := Hom (N, Z).

| A

Tars := Spec (C[N]) Tn.s := Spec (C[M])
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For k € I:

o u(s) :=(e; :i € I) where €, :== {

© Taps —=> Thryp, (s) defined in terms of pullback of functions by
pp(e") = 2" (L 2o) e

® Tn;s = Ty, (s) defined in terms of pullback of functions by
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Mutation
For k € I:
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o u(s) :=(e; :i € I) where €, :== .
—ey fori=k

© Taps —=> Thryp, (s) defined in terms of pullback of functions by
H(Em) = 2n (L o))
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V.
Two flavors of cluster varieties
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Definition
Denote the projection M — M /N by m. A cluster ensemble lattice
map is a map p* : N — M such that

Q ply,:n—({n, -}:N—Z) and

Q@ mop inm {n, -}y,

Observe: Cluster ensemble maps commute with mutation.

Definition
A cluster ensemble lattice map p* defines a cluster ensemble map
p: A— X in terms of pullback of functions.

p'(em) = )




The ¥-basis ([GHK15b], [GHKK18])

Fact/Definition

Cluster varieties V are log Calabi-Yau schemes—




The ¥-basis ([GHK15b], [GHKK18])

Fact/Definition

Cluster varieties V are log Calabi-Yau schemes—

they are endowed with a unique (up to scaling) volume form 2 having at
worst a simple pole along any irreducible boundary divisor in any
compactification of V.




The ¥-basis ([GHK15b], [GHKK18])

Fact/Definition

Cluster varieties V are log Calabi-Yau schemes—

they are endowed with a unique (up to scaling) volume form 2 having at
worst a simple pole along any irreducible boundary divisor in any
compactification of V.

Example (Log Calabi-Yau scheme)
Algebraic torus T' = (C*)", Q = dz—? A-ee A G2n




The ¥-basis ([GHK15b], [GHKK18])

Fact/Definition

Cluster varieties V are log Calabi-Yau schemes—

they are endowed with a unique (up to scaling) volume form 2 having at
worst a simple pole along any irreducible boundary divisor in any
compactification of V.

Example (Log Calabi-Yau scheme)

Algebraic torus T' = (C*)", Q = dzl AR d"‘"
If (Y, D) is any toric variety with torlc boundary divisor, 2 has a simple
pole along each component of D.
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Definition

Let (V, Q) be log Calabi-Yau scheme. A divisorial discrete valuation
(ddv) v : C(V)\ 0 — Z is a discrete valuation of the form v = ordp( - )
where D is (a positive multiple of) an irreducible effective divisor in a
variety birational to V. The integral tropicalization of V is

Yiop (7)) .= {v ddv : v(Q) < 0} U {0}.

.

Example (Integral tropicalization)

TyP(Z) = N
Recall that toric divisors are indexed by cocharacters.

v
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Conjecture (Gross-Hacking-Keel)
Let V be an affine log Calabi-Yau with maximal boundary. Then

@ we have an algebra Ay, with basis V'"°P(Z), where multiplication is
given by broken line counts, and

@ Spec(Ay) =VV.

This is known as the ¥-basis, with elements written as 1, for
v € VTP (7).

A




The ¥-basis ([GHK15b], [GHKK18])

Cluster case

o If V is a cluster variety, this is a corrected form of a conjecture of
Fock-Goncharov ([FG09]).




The ¥-basis ([GHK15b], [GHKK18])

Cluster case

o If V is a cluster variety, this is a corrected form of a conjecture of
Fock-Goncharov ([FG09]).

@ This is established for “Fock-Goncharov dual” cluster varieties
satisfying certain affineness conditions in [GHKK18].




The ¥-basis ([GHK15b], [GHKK18])

Cluster case

o If V is a cluster variety, this is a corrected form of a conjecture of
Fock-Goncharov ([FG09]).

@ This is established for “Fock-Goncharov dual” cluster varieties
satisfying certain affineness conditions in [GHKK18].

@ For such cluster varieties V, it is said that the full Fock-Goncharov
conjecture holds for V.
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Cluster case

o If V is a cluster variety, this is a corrected form of a conjecture of
Fock-Goncharov ([FG09]).

@ This is established for “Fock-Goncharov dual” cluster varieties
satisfying certain affineness conditions in [GHKK18].

@ For such cluster varieties V, it is said that the full Fock-Goncharov
conjecture holds for V.

@ Marsh-Scott show that the full Fock-Goncharov conjecture holds for
the cluster varieties associated to Grassmannians ([MS16]).
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Given a rational map f : U --» V of log Calabi-Yaus with f*(Qy) = Q,
the tropicalization of f is

ftrop . utrop (Z) — Vtrop (Z)

v vo fr.

Assuming the conjecture holds...

| A\

Let f : U/ — V be a map of affine log Calabi-Yaus with maximal boundary
satisfying:

If R (9, : v € U™P(Z)) is a relation in Ay, then
R (ﬁftmp(v) = UtrOP(Z)) is a relation in Ay;.

Then fUoP : (f'OP(7Z) — V'P(Z) determines a map of algebras
Ay — Ay, and so a map of schemes fV : VYV — UV,
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Induced maps of mirrors

Proposition (Bossinger, Cheung, M, Ndjera Chévez)

Assume the full Fock-Goncharov conjecture holds for A and X and let p
be any cluster ensemble map.

o If R(Jq:a€ A™P(Z)) is a relation in A4, then
R (9ptron(q) = @ € A"P(Z)) is a relation in Ay.

@ There is a choice of cluster structure for AY and XV such that
pY : XY — AV is again a cluster ensemble map.
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pY : XV — AV as cluster ensemble map

In skew symmetric type, relevant choice of cluster structure is associated
to the chiral dual initial data (I'°P, s°P):
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@ sP =g

Then:
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In skew symmetric type, relevant choice of cluster structure is associated
to the chiral dual initial data (I'°P, s°P):

@ Nrop = Nr, with skew-form {-, - }pop = —{+, -}
® (Nuf)por = (Nuf)p
@ Irop = It and (IUf)FOP = (IUf)I‘

@ s°P =5

Then:
o XV = Al"op’[sop]




Induced maps of mirrors

pY : XV — AV as cluster ensemble map

In skew symmetric type, relevant choice of cluster structure is associated
to the chiral dual initial data (I'°P, s°P):

@ Nro» = Ny, with skew-form {-, « }pop = —{+, * }p
® (Nuf)rop = (Nuf)p
® Itep = Ir and (Luf)pop = (Luf)r
o sP=s
Then:
o XV = Arop [sop]
o AV = Xrop [sop]




Induced maps of mirrors

pY 1 XY — AY as cluster ensemble map

In skew symmetric type, relevant choice of cluster structure is associated
to the chiral dual initial data (I'°P, s°P):

@ Nrop = Nr, with skew-form {-, - }pop = —{+, -}
® (Nuf)por = (Nuf)p
@ Irop = It and (IUf)FOP = (IUf)I‘

@ s°P =5

Then:
o XV = Arop [sop]
o AV = Xrop [sop]
o (p¥) :n— (p*)*(n)
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Plabic graphs for Gr,,_x (C") ([Pos06], [RW19])

@ A plabic graph G is an undirected graph drawn on a disk with
cyclically ordered boundary vertices (1,--- ,n), and each internal
vertex either black or white.

@ The trip T; is the path from i to some boundary vertex m(7)
consisting of maximal right turns at black vertices and maximal left
turns at white vertices.

e If Gis a "reduced” plabic graph and 7¢ (i) =i+ (n — k) for all i- “G
is of type . ,,”— then the trips assign Pliicker labels in (n[f]k) to each
face as illustrated in the following example.

.
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A cluster structure ([Sco06])

The corresponding Pliicker coordinates form a cluster in Scott’s A-cluster
structure of UTq,, , (cn)® = UTqr, () \ D- Here,

o D= Z D(iv1,i+(n—k)), Where
i=1

e Dy —{xEUTGrn NCOR21¢ —0}
The skew form and labeled basis are encoded in a quiver Q(G):
o {e;,ej} =#{ arrows e; — o;} — # { arrows ¢; — ;}
Q(Q) is constructed as in the following example:
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Plabic graphs for Gry (C")

Let G°P be the plabic graph obtained by swapping colors of all internal
vertices of G.

o If G is a reduced plabic graph of type 7, ,, then G°P is a reduced
plabic graph of type m,_ .
@ We obtain an A cluster in UTq,, (cn)-

@ The Plicker indices associated to the faces of G and G°P are related
by J — wa(J)°.
@ We have Q(G)°P? = Q(G°P)-so (T',s) — (I'°P,s°P).




Grassmannian cluster structure

Example ((G%)°")




Grassmannian cluster structure

Example ((G5)°P)

#%fgi%
NS




Grassmannian cluster structure

Two X-cluster structures

o If Ar g is the A-cluster variety in UTq,, ,(c»), then the same initial
data determines a cluster variety AT ).




Grassmannian cluster structure

Two X-cluster structures

o If Ar g is the A-cluster variety in UTq,, ,(c»), then the same initial
data determines a cluster variety AT ).

@ A plabic graph G of type 7, also determines an X" variety X[rg’]t
explicitly embedded in Gr,,_j, (C") in terms of network parameters.
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Definition ([RW19])

o A perfect orientation O of a plabic graph G is an orientation of its
edges such that every black internal vertex has exactly one outgoing
edge and every white internal vertex has exactly one incoming edge.

o If G is of type 7y, ,,, then n — k boundary vertices of (G, O) will be
sources and the remaining k sinks. Call the source set Ip.

o A flow from Ip to J € ( (7] ) is a vertex-disjoint collection of directed
paths with sources I \ (Ip N J) and targets J \ (Ip N J).

@ To each face v of (G, associate a network parameter x,,.

o Let the weight of a path p, denoted wt(p), be the product of all
network parameters x,, for v a face to the left of p, and let the

weight of a flow F— wt(F')— be the product of the weights of all
paths p in F.
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2 2
T79345L12349712389L23456 L23459L23489 L793452012349L12389L23456 L23459
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Grassmannian cluster structure

X[lg]t C Gry—¢ ((Cn) ([Rng])

Denote the set of faces of G by Pg.
For each (G, O) of type 75, the torus

Te.0 := Spec | ClzE! : v € Pg, H T, = 1]

VEPq

embeds into the affine open set where p;,, is non-zero via flow
polynomials.

Let g 0(J) be the set of flows from Ip to J.

> = Z wt(F)

FE.FG"O(J)

Flowg,o ( b

Io




Grassmannian cluster structure

Example

8

7
FIOWGZ?B ,O (

8 7
P12467

2
= T12345%12349212389L23456L23459L23489
D12345

2
+ X712345%12349212389223456 L23459
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Grassmannian cluster structure

Xpst € Gr,— (C*) ([RW19])

@ The network parameters {z, : v € Py} form an X cluster.
@ Mutation is encoded by the quiver Q(G).

e Caution: {z, : v € Py} is not naturally identified with the X" cluster
of AT [ associated to G.

v

All constructions we have described for Gr,,_j (C™) apply to Gry (C") as
well. In fact, [(G})°P] = (G2 ]

n—k,n




Landau-Ginzburg mirror families for Grassmannians

Gross-Hacking-Keel(-Kontsevich) perspective

e Each Dy ;4 (n—k) defines a point OrdD[i+1,i+(n—k)] in

(Grn—g (C")°)"P(2).
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Gross-Hacking-Keel(-Kontsevich) perspective

e Each Dy ;4 (n—k) defines a point OrdD[i+1,i+(n—k)] in
(Grp—p, (C")°)"P(2).

@ As such, it defines a ¥-function on the mirror family

OrdD[i+1,i+(n—k)]
Y = TeyGrp_i(C™))-

n
@ The Landau-Ginzburg potential is WII;’" = ZﬁordD[_H i)
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@ Scott described UTq,, ,(cn) as a partial compactification of A by
simply allowing frozen variables to vanish. Using this description, )
will be viewed as A".




Landau-Ginzburg mirror families for Grassmannians

Gross-Hacking-Keel(-Kontsevich) perspective

in

e Each Dy ;4 (n—k) defines a point OrdD[i+1,i+(n—k)]

(Grn—g (C")°)"P(2).

@ As such, it defines a ¥-function on the mirror family

OrdD[i+1,i+(n—k)]
Y = TeyGrp_i(C™))-

n
@ The Landau-Ginzburg potential is WII;’" = ZﬁordD[_H i)
=1 R

@ Scott described UTq,, ,(cn) as a partial compactification of A by
simply allowing frozen variables to vanish. Using this description, )
will be viewed as A".

o If the frozen vertex v associated to pii1 ;4 (n—k) i @ source of Qrg,

then 9,

=z %,

OT4Dp 1,54 (k)] | Ty o




Landau-Ginzburg mirror families for Grassmannians

Marsh-Rietsch perspective

@ Marsh-Rietsch potential Wf’” is a simple expression in terms of
Pliicker coordinates on Gry (C™), where each summand reflects a
quantum product of Schubert cocycles for Gr,,_j (C™).




Landau-Ginzburg mirror families for Grassmannians

Marsh-Rietsch perspective

@ Marsh-Rietsch potential Wf’” is a simple expression in terms of
Pliicker coordinates on Gry (C™), where each summand reflects a
quantum product of Schubert cocycles for Gr,,_j (C™).

zn: q(;i’nfk Plit1,i+k—1u{i+k+1}
i—1 Plit1,i+k]

o Explicitly, W(f’” =
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Marsh-Rietsch perspective

@ Marsh-Rietsch potential Wf’” is a simple expression in terms of
Pliicker coordinates on Gry (C™), where each summand reflects a
quantum product of Schubert cocycles for Gr,,_j (C™).

n
o Explicitly, Wé{:,n _ Zq6i7n7,€p[z-i—l,z-i—k—l]U{z—i-k-l-l}_

=i Plit1,i+k]
Plit1,i+k—1]u{i+k+1}
Pli+1,i+k]

@ The summand corresponds to the divisor Dy; 1 -




Landau-Ginzburg mirror families for Grassmannians

Marsh-Rietsch perspective

@ Marsh-Rietsch potential Wf’" is a simple expression in terms of
Pliicker coordinates on Gry (C™), where each summand reflects a
quantum product of Schubert cocycles for Gr,,_j (C™).

n
o Explicitly, W(;c,n _ Zq6i7n7,€p[z-i—l,z-i—k—l]U{H-k-l-l}_

i1 Plit-1,i+k]
Pli+1,i+k—1]u{i+k+1} o g ' ‘
@ The summand Pl i corresponds to the divisor Dy; 1 -

@ Pliicker coordinates are A variables, so view Gr,,_; (C™) as a
compactification of an X’ variety and the potential as a function on
an A variety.
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Theorem (Bossinger, Cheung, M, Najera Chavez)

There is a pair of cluster ensemble lattice maps (p*, (p¥)*) with kernels K
and KV such that:
e K is naturally identified with C1(Gr,,_x (C™))* and KV with
Cl(Gr (C))*
@ p descends to an isomorphism p : A/Tx — X1er,., and pY to an
isomorphism pY : XV /Trv — AYcr, .
@ P extends to an automorphism of Gr,_ (C") and p" to an
automorphism of Gry (C™).

=V *

° (p") (ﬂordD[H—l,H—(n—k)]
P(Dfiyrit(n-wy) and 7" Gordp, o
corresponding to 5" (Dji11,i1k])-

If (k,n) ¢ {(2,4),(1,n),(n—1,n)}, this pair of maps is unique and both
automorphisms are given in terms of pullbacks by p; — py_, .

) is the summand of W ', corresponding to

nkn

) is the summand of W, _
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Example (k =3, n =5)

5
Pey
Wﬂ - Q9OYdD[i-~-1,i-;-z]
=1
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— €23 | y—€237€35

v _ 2,5 P24
° D = Dyags ~ W mand £24
p'(D123) 145 7~ sum bt
P24 __ P45 Pp25P34 __ ek —ek eh-+ek, —eb,—ek
@ £24 — D45 — %457 €35 25176347 €237 €35
p23 p3s + p23P35 < +z
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Example (Potentials on Gr ((CS)O)

° ﬁordD123 — p€23 | ,—e2—ess

\Y _ 2,5 P24
° = P24

(D123) D145 ~ Wq summand P23
P24 _ P45 4 D25P34 _ ej5—egs €55 Te3a—e33—e3s
p2s T pas | paspas | © Tz
1

° p*(—eas) € €35 — €35 + Ny and p*(—e35) = €3+ ey — ey — ey
o With p*(—e23) = e35 + €34 — €53 — €35, we get

*(,—e —e23—e __ e3-tel, —e>.—e} ejs—e;
p(Z 23 4 pTe23 35)_225 347 %237 %5 ;%457 %5

S
=

s0 p* (ﬁorlezs) - pzs'



Example (Potentials on Gr ((CS)O)

° ﬁordD123 — pT€23 | y—e23—€ss
o p¥(D123) = Digs ~» W2° summand B2
123 145 g summand ;°o
P24 _ P45 4 D25P34 _ ej5—egs €55 Te3a—e33—e3s
p23 p3s5 p23P35 =z + z
* 1 * % * * *
o p*(—e2s) € €35 — €35 + Ny; and p (—es5) = €33 +€l5 — €35 — €3y
o With p*(—e23) = e35 + €34 — €53 — €35, we get

P27 4 2B T) = 2CasTes —eszess zeZ5_€§5,
* — P24
sop (ﬁorlezs) p23’
Other summands similar.
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® Yord =2z
D12 T .s0p
_ P135
e p(D12) = D3y ~ P125

o (p¥)*(—e125) € €f35 + Ny
o With (p¥)*(—ei125) = ef35 — €]95, We get (pv)*wOTdDm) ~ pis’



Example (Potentials on Gr; (C°)°)

® Uord = z7 %
D12 Tis0p
— p135
© p(D12) = Dy ~~ 12

(p¥)*(—e12s) € €}g5 + Ng;
With (p¥)*(—e125) = e}35 — €]a5, we get (PV)*(’ﬂordDm) = plos”
@ Other summands similar.



Connection to [RW19]

Corollary (Bossinger, Cheung, M, Néjera Chavez)

Identification of superpotential polytopes for Gr,,_; (C"):
Fix positive constants ¢; for i € [1,n]. Let

P={e e Mlen) ™ ® 05T, @ =~}

and

. . . trop
Q= {a € (XY /Tiev )™ (R) : (p[z+1,z+(n—k)]u{z+k+1}> (@) > _CH_%} '

Pli+1,i+k]

Then (5*)"P(Q) = P.




Connection to [RW19]

Rietsch-Williams use X' coordinates to describe their NO bodies and
toric degenerations. So:
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Connection to [RW19]

Theorem (Bossinger, Cheung, M, N&jera Chévez)

The Pliicker coordinates whose flow polynomials with respect to
((G}5)°P, O) are monomials form precisely the A cluster of GJ7¢; .

There is an isomorphism v : X[(Gm)op} — X[Grec 1 that is a monomial
transformation which identifies X’ variables for mutable indices and gives
the following commutative diagram:

FlOW(Gze%)op ,O

X G yor) : Algree, 1/ Tk
plGree, ]
@
X[Grec ] 1

n—k,n!’




Connection to [RW19]

Using 1) we can recover the Rietsch-Williams NO bodies and toric
degenerations as well.
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