Grassmannians, plabic graphs, and mirror symmetry for cluster varieties

Timothy Magee

King's College London

Ongoing joint work with Lara Bossinger, Mandy Cheung, and Alfredo Nájera Chávez

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Initial data (Γ, \mathbf{s})

• Lattice N with skew-form $\{\cdot, \cdot\} : N \times N \to \mathbb{Z}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Initial data (Γ, \mathbf{s})

- Lattice N with skew-form $\{\, {\boldsymbol{\cdot}}\,,\, {\boldsymbol{\cdot}}\,\}:N\times N\to \mathbb{Z}$
- Saturated sublattice $N_{\mathrm{uf}} \subset N$

Initial data (Γ, \mathbf{s})

- Lattice N with skew-form $\{\, {\boldsymbol{\cdot}} \,,\, {\boldsymbol{\cdot}} \,\}: N \times N \to \mathbb{Z}$
- Saturated sublattice $N_{\mathrm{uf}} \subset N$
- Index set I with $|I| = {\rm rank}\,(N)$ and subset $I_{\rm uf}$ with $|I_{\rm uf}| = {\rm rank}\,(N_{\rm uf})$

Initial data (Γ, \mathbf{s})

- $\Gamma := \begin{cases} \bullet \text{ Lattice } N \text{ with skew-form } \{ \cdot, \cdot \} : N \times N \to \mathbb{Z} \\ \bullet \text{ Saturated sublattice } N_{\mathrm{uf}} \subset N \\ \bullet \text{ Index set } I \text{ with } |I| = \mathrm{rank} (N) \text{ and subset } I_{\mathrm{uf}} \text{ with } |I_{\mathrm{uf}}| = \mathrm{rank} (N_{\mathrm{uf}}) \end{cases}$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Initial data (Γ, \mathbf{s})

- Lattice N with skew-form $\{\, \cdot \,,\, \cdot \,\}:N imes N o \mathbb{Z}$
- $\Gamma := \begin{cases} \bullet \text{ Saturated sublattice } N_{\mathrm{uf}} \subset N \\ \bullet \text{ Index set } I \text{ with } |I| = \mathrm{rank} (N) \text{ and subset } I_{\mathrm{uf}} \text{ with } |I_{\mathrm{uf}}| = \mathrm{rank} (N_{\mathrm{uf}}) \end{cases}$
 - Labeled basis $\mathbf{s} = (e_i : i \in I)$ of N with $\{e_i : i \in I_{uf}\}$ basis of $N_{\rm nf}$

Initial data (Γ, \mathbf{s})

- Lattice N with skew-form $\{\cdot, \cdot\} : N \times N \to \mathbb{Z}$
- $\Gamma := \begin{cases} \bullet \text{ Saturated sublattice } N_{\mathrm{uf}} \subset N \\ \bullet \text{ Index set } I \text{ with } |I| = \mathrm{rank} (N) \text{ and subset } I_{\mathrm{uf}} \text{ with } \\ |I_{\mathrm{uf}}| = \mathrm{rank} (N_{\mathrm{uf}}) \end{cases}$
 - Labeled basis $\mathbf{s} = (e_i : i \in I)$ of N with $\{e_i : i \in I_{uf}\}$ basis of $N_{\rm uf}$

Cluster tori

Let $M := \operatorname{Hom}(N, \mathbb{Z}).$

Initial data (Γ, \mathbf{s})

• Lattice N with skew-form $\{\cdot, \cdot\} : N \times N \to \mathbb{Z}$

• Saturated sublattice
$$N_{\rm uf} \subset N$$

- $\Gamma := \begin{cases} \bullet \text{ Saturated sublattice } I_{\text{uf}} \subset I \\ \bullet \text{ Index set } I \text{ with } |I| = \operatorname{rank}(N) \text{ and subset } I_{\text{uf}} \text{ with } |I_{\text{uf}}| = \operatorname{rank}(N_{\text{uf}}) \end{cases}$
 - Labeled basis $\mathbf{s} = (e_i : i \in I)$ of N with $\{e_i : i \in I_{uf}\}$ basis of $N_{\rm uf}$

Cluster tori

Let $M := \operatorname{Hom}(N, \mathbb{Z}).$

$$T_{M;\mathbf{s}} := \operatorname{Spec}\left(\mathbb{C}[N]\right) \qquad \qquad T_{N;\mathbf{s}} := \operatorname{Spec}\left(\mathbb{C}[M]\right)$$

Mutation

For $k \in I_{uf}$:

•
$$\mu_k(\mathbf{s}) := (e'_i : i \in I)$$
 where $e'_i := \begin{cases} e_i + [\{e_i, e_k\}]_+ e_k & \text{for } i \neq k \\ -e_k & \text{for } i = k \end{cases}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Mutation

For $k \in I_{uf}$:

•
$$\mu_k(\mathbf{s}) := (e'_i : i \in I)$$
 where $e'_i := \begin{cases} e_i + [\{e_i, e_k\}]_+ e_k & \text{for } i \neq k \\ -e_k & \text{for } i = k \end{cases}$

• $T_{M;s} \dashrightarrow T_{M;\mu_k(s)}$ defined in terms of pullback of functions by $\mu_k^*(z^n) = z^n (1 + z^{e_k})^{-\{n,e_k\}}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Mutation

For $k \in I_{uf}$:

•
$$\mu_k(\mathbf{s}) := (e'_i : i \in I)$$
 where $e'_i := \begin{cases} e_i + [\{e_i, e_k\}]_+ e_k & \text{for } i \neq k \\ -e_k & \text{for } i = k \end{cases}$

- $T_{M;s} \dashrightarrow T_{M;\mu_k(s)}$ defined in terms of pullback of functions by $\mu_k^*(z^n) = z^n (1 + z^{e_k})^{-\{n,e_k\}}$
- $T_{N;s} \dashrightarrow T_{N;\mu_k(s)}$ defined in terms of pullback of functions by $\mu_k^*(z^m) = z^m \left(1 + z^{\{e_k,\cdot\}}\right)^{-\langle e_k,m \rangle}$

Mutation

For $k \in I_{uf}$:

•
$$\mu_k(\mathbf{s}) := (e'_i : i \in I)$$
 where $e'_i := \begin{cases} e_i + [\{e_i, e_k\}]_+ e_k & \text{for } i \neq k \\ -e_k & \text{for } i = k \end{cases}$

- $T_{M;s} \dashrightarrow T_{M;\mu_k(s)}$ defined in terms of pullback of functions by $\mu_k^*(z^n) = z^n (1 + z^{e_k})^{-\{n,e_k\}}$
- $T_{N;s} \dashrightarrow T_{N;\mu_k(s)}$ defined in terms of pullback of functions by $\mu_k^*(z^m) = z^m \left(1 + z^{\{e_k,\cdot\}}\right)^{-\langle e_k,m \rangle}$

Two flavors of cluster varieties

$$\mathcal{X}_{\Gamma,[\mathbf{s}]} := \bigcup_{\mathbf{s}' \in [\mathbf{s}]} T_{M;\mathbf{s}'} / \sim$$

$$\mathcal{A}_{\Gamma,[\mathbf{s}]} \coloneqq \bigcup_{\mathbf{s}' \in [\mathbf{s}]} T_{N;\mathbf{s}'} / \sim$$

Mutation

For $k \in I_{uf}$:

•
$$\mu_k(\mathbf{s}) := (e'_i : i \in I)$$
 where $e'_i := \begin{cases} e_i + [\{e_i, e_k\}]_+ e_k & \text{for } i \neq k \\ -e_k & \text{for } i = k \end{cases}$

- $T_{M;s} \dashrightarrow T_{M;\mu_k(s)}$ defined in terms of pullback of functions by $\mu_k^*(z^n) = z^n (1 + z^{e_k})^{-\{n,e_k\}}$
- $T_{N;s} \dashrightarrow T_{N;\mu_k(s)}$ defined in terms of pullback of functions by $\mu_k^*(z^m) = z^m \left(1 + z^{\{e_k,\cdot\}}\right)^{-\langle e_k,m \rangle}$

Two flavors of cluster varieties

$$\mathcal{X} := \mathcal{X}_{\Gamma, [\mathbf{s}]} := \bigcup_{\mathbf{s}' \in [\mathbf{s}]} T_{M; \mathbf{s}'} / \sim$$

$$\mathcal{A} := \mathcal{A}_{\Gamma, [\mathbf{s}]} := \bigcup_{\mathbf{s}' \in [\mathbf{s}]} T_{N; \mathbf{s}'} / \sim$$

Definition

Denote the projection $M \to M/N_{\rm uf}^{\perp}$ by π . A cluster ensemble lattice map is a map $p^*: N \to M$ such that

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Definition

Denote the projection $M \to M/N_{\rm uf}^{\perp}$ by π . A cluster ensemble lattice map is a map $p^*: N \to M$ such that

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Definition

Denote the projection $M \to M/N_{\rm uf}^{\perp}$ by π . A cluster ensemble lattice map is a map $p^*: N \to M$ such that

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

$$\ \, @ \ \, \pi \circ p^* : n \mapsto \{n, \cdot\}|_{N_{\mathrm{uf}}}.$$

Definition

Denote the projection $M \to M/N_{\rm uf}^{\perp}$ by π . A cluster ensemble lattice map is a map $p^*: N \to M$ such that

$$\bullet \hspace{0.1 cm} p^{*}|_{N_{\mathrm{uf}}}: n \mapsto (\{n, \ {\boldsymbol{\cdot}} \ \}: N \to \mathbb{Z}), \text{ and}$$

$$\ \, \bullet p^*: n \mapsto \{n, \cdot\}|_{N_{\mathrm{uf}}}.$$

Observe: Cluster ensemble maps commute with mutation.

Definition

Denote the projection $M \to M/N_{\rm uf}^{\perp}$ by π . A cluster ensemble lattice map is a map $p^*: N \to M$ such that

$$\hspace{0.1 cm} \bullet \hspace{0.1 cm} p^{\ast}|_{N_{\mathrm{uf}}}: n \mapsto (\{n, \hspace{0.1 cm} \boldsymbol{\cdot} \hspace{0.1 cm}\}: N \rightarrow \mathbb{Z}), \hspace{0.1 cm} \mathsf{and} \hspace{0.1 cm}$$

$$\ \, @ \ \, \pi \circ p^* : n \mapsto \{n, \cdot\}|_{N_{\mathrm{uf}}}.$$

Observe: Cluster ensemble maps commute with mutation.

Definition

A cluster ensemble lattice map p^* defines a **cluster ensemble map** $p:\mathcal{A}\to\mathcal{X}$ in terms of pullback of functions.

$$p^*(z^n) = z^{p^*(n)}$$

Cluster varieties $\mathcal V$ are log Calabi-Yau schemes-

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Cluster varieties \mathcal{V} are log Calabi-Yau schemes-

they are endowed with a unique (up to scaling) volume form Ω having at worst a simple pole along any irreducible boundary divisor in any compactification of \mathcal{V} .

Cluster varieties \mathcal{V} are log Calabi-Yau schemes-

they are endowed with a unique (up to scaling) volume form Ω having at worst a simple pole along any irreducible boundary divisor in any compactification of \mathcal{V} .

Example (Log Calabi-Yau scheme)

Algebraic torus
$$T = (\mathbb{C}^*)^n$$
, $\Omega = \frac{dz_1}{z_1} \wedge \cdots \wedge \frac{dz_n}{z_n}$.

Cluster varieties \mathcal{V} are log Calabi-Yau schemes-

they are endowed with a unique (up to scaling) volume form Ω having at worst a simple pole along any irreducible boundary divisor in any compactification of \mathcal{V} .

Example (Log Calabi-Yau scheme)

Algebraic torus $T = (\mathbb{C}^*)^n$, $\Omega = \frac{dz_1}{z_1} \wedge \cdots \wedge \frac{dz_n}{z_n}$. If (Y, D) is any toric variety with toric boundary divisor, Ω has a simple pole along each component of D.

Let (\mathcal{V}, Ω) be log Calabi-Yau scheme. A **divisorial discrete valuation** (ddv) $\nu : \mathbb{C}(\mathcal{V}) \setminus 0 \to \mathbb{Z}$ is a discrete valuation of the form $\nu = \operatorname{ord}_D(\cdot)$ where D is (a positive multiple of) an irreducible effective divisor in a variety birational to \mathcal{V} .

Let (\mathcal{V}, Ω) be log Calabi-Yau scheme. A **divisorial discrete valuation** (ddv) $\nu : \mathbb{C}(\mathcal{V}) \setminus 0 \to \mathbb{Z}$ is a discrete valuation of the form $\nu = \operatorname{ord}_D(\cdot)$ where D is (a positive multiple of) an irreducible effective divisor in a variety birational to \mathcal{V} . The **integral tropicalization of** \mathcal{V} is $\mathcal{V}^{\operatorname{trop}}(\mathbb{Z}) := \{\nu \ \operatorname{ddv} : \nu(\Omega) < 0\} \cup \{0\}.$

Let (\mathcal{V}, Ω) be log Calabi-Yau scheme. A **divisorial discrete valuation** (ddv) $\nu : \mathbb{C}(\mathcal{V}) \setminus 0 \to \mathbb{Z}$ is a discrete valuation of the form $\nu = \operatorname{ord}_D(\cdot)$ where D is (a positive multiple of) an irreducible effective divisor in a variety birational to \mathcal{V} . The **integral tropicalization of** \mathcal{V} is $\mathcal{V}^{\operatorname{trop}}(\mathbb{Z}) := \{\nu \ \operatorname{ddv} : \nu(\Omega) < 0\} \cup \{0\}.$

Example (Integral tropicalization)

 $T_N^{\operatorname{trop}}(\mathbb{Z}) = N$

Let (\mathcal{V}, Ω) be log Calabi-Yau scheme. A **divisorial discrete valuation** (ddv) $\nu : \mathbb{C}(\mathcal{V}) \setminus 0 \to \mathbb{Z}$ is a discrete valuation of the form $\nu = \operatorname{ord}_D(\cdot)$ where D is (a positive multiple of) an irreducible effective divisor in a variety birational to \mathcal{V} . The **integral tropicalization of** \mathcal{V} is $\mathcal{V}^{\operatorname{trop}}(\mathbb{Z}) := \{\nu \ \operatorname{ddv} : \nu(\Omega) < 0\} \cup \{0\}.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Example (Integral tropicalization)

 $T_N^{\rm trop}(\mathbb{Z}) = N$ Recall that toric divisors are indexed by cocharacters.

Let $\ensuremath{\mathcal{V}}$ be an affine log Calabi-Yau with maximal boundary.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Let $\ensuremath{\mathcal{V}}$ be an affine log Calabi-Yau with maximal boundary.

Aside

This means there is some compactification (Y, D) of \mathcal{V} such that Ω has a pole along all divisorial components of D and D has a 0-stratum.

Let ${\mathcal V}$ be an affine log Calabi-Yau with maximal boundary. Then

• we have an algebra $A_{\mathcal{V}}$ with basis $\mathcal{V}^{trop}(\mathbb{Z})$, where multiplication is given by broken line counts, and

Aside

This means there is some compactification (Y, D) of \mathcal{V} such that Ω has a pole along all divisorial components of D and D has a 0-stratum.

Let $\ensuremath{\mathcal{V}}$ be an affine log Calabi-Yau with maximal boundary. Then

• we have an algebra $A_{\mathcal{V}}$ with basis $\mathcal{V}^{trop}(\mathbb{Z})$, where multiplication is given by broken line counts, and

Aside

These counts are a tropical version of log Gromov-Witten invariants.

Let $\ensuremath{\mathcal{V}}$ be an affine log Calabi-Yau with maximal boundary. Then

• we have an algebra $A_{\mathcal{V}}$ with basis $\mathcal{V}^{trop}(\mathbb{Z})$, where multiplication is given by broken line counts, and

2 Spec
$$(A_{\mathcal{V}}) = \mathcal{V}^{\vee}$$

Aside

These counts are a tropical version of log Gromov-Witten invariants.

Let $\ensuremath{\mathcal{V}}$ be an affine log Calabi-Yau with maximal boundary. Then

• we have an algebra $A_{\mathcal{V}}$ with basis $\mathcal{V}^{\text{trop}}(\mathbb{Z})$, where multiplication is given by broken line counts, and

2 Spec
$$(A_{\mathcal{V}}) = \mathcal{V}^{\vee}$$

Aside

This is known as the ϑ -basis, with elements written as ϑ_{ν} for $\nu \in \mathcal{V}^{trop}(\mathbb{Z})$.

• If \mathcal{V} is a cluster variety, this is a corrected form of a conjecture of Fock-Goncharov ([FG09]).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• If \mathcal{V} is a cluster variety, this is a corrected form of a conjecture of Fock-Goncharov ([FG09]).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• This is established for "Fock-Goncharov dual" cluster varieties satisfying certain affineness conditions in [GHKK18].

- If \mathcal{V} is a cluster variety, this is a corrected form of a conjecture of Fock-Goncharov ([FG09]).
- This is established for "Fock-Goncharov dual" cluster varieties satisfying certain affineness conditions in [GHKK18].
- For such cluster varieties V, it is said that the full Fock-Goncharov conjecture holds for V.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- If V is a cluster variety, this is a corrected form of a conjecture of Fock-Goncharov ([FG09]).
- This is established for "Fock-Goncharov dual" cluster varieties satisfying certain affineness conditions in [GHKK18].
- For such cluster varieties V, it is said that the full Fock-Goncharov conjecture holds for V.
- Marsh-Scott show that the full Fock-Goncharov conjecture holds for the cluster varieties associated to Grassmannians ([MS16]).
Definition

Given a rational map $f: \mathcal{U} \dashrightarrow \mathcal{V}$ of log Calabi-Yaus with $f^*(\Omega_{\mathcal{V}}) = \Omega_{\mathcal{U}}$, the tropicalization of f is

$$f^{\operatorname{trop}}: \mathcal{U}^{\operatorname{trop}}(\mathbb{Z}) \to \mathcal{V}^{\operatorname{trop}}(\mathbb{Z})$$
$$\upsilon \mapsto \upsilon \circ f^*.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

Given a rational map $f : \mathcal{U} \dashrightarrow \mathcal{V}$ of log Calabi-Yaus with $f^*(\Omega_{\mathcal{V}}) = \Omega_{\mathcal{U}}$, the tropicalization of f is

$$f^{\mathrm{trop}}: \mathcal{U}^{\mathrm{trop}}(\mathbb{Z}) \to \mathcal{V}^{\mathrm{trop}}(\mathbb{Z})$$
$$\upsilon \mapsto \upsilon \circ f^*.$$

Assuming the conjecture holds...

Let $f: \mathcal{U} \to \mathcal{V}$ be a map of affine log Calabi-Yaus with maximal boundary satisfying:

If
$$R\left(\vartheta_{\upsilon}: \upsilon \in \mathcal{U}^{\operatorname{trop}}(\mathbb{Z})\right)$$
 is a relation in $A_{\mathcal{U}}$, then $R\left(\vartheta_{f^{\operatorname{trop}}(\upsilon)}: \upsilon \in \mathcal{U}^{\operatorname{trop}}(\mathbb{Z})\right)$ is a relation in $A_{\mathcal{V}}$.

Definition

Given a rational map $f : \mathcal{U} \dashrightarrow \mathcal{V}$ of log Calabi-Yaus with $f^*(\Omega_{\mathcal{V}}) = \Omega_{\mathcal{U}}$, the tropicalization of f is

$$\begin{aligned} f^{\mathrm{trop}} &: \mathcal{U}^{\mathrm{trop}}(\mathbb{Z}) \to \mathcal{V}^{\mathrm{trop}}(\mathbb{Z}) \\ & \upsilon \mapsto \upsilon \circ f^*. \end{aligned}$$

Assuming the conjecture holds...

Let $f : \mathcal{U} \to \mathcal{V}$ be a map of affine log Calabi-Yaus with maximal boundary satisfying:

If
$$R\left(\vartheta_{\upsilon}: \upsilon \in \mathcal{U}^{\operatorname{trop}}(\mathbb{Z})\right)$$
 is a relation in $A_{\mathcal{U}}$, then $R\left(\vartheta_{f^{\operatorname{trop}}(\upsilon)}: \upsilon \in \mathcal{U}^{\operatorname{trop}}(\mathbb{Z})\right)$ is a relation in $A_{\mathcal{V}}$.

Then $f^{\mathrm{trop}}: \mathcal{U}^{\mathrm{trop}}(\mathbb{Z}) \to \mathcal{V}^{\mathrm{trop}}(\mathbb{Z})$ determines a map of algebras $A_{\mathcal{U}} \to A_{\mathcal{V}}$

Definition

Given a rational map $f : \mathcal{U} \dashrightarrow \mathcal{V}$ of log Calabi-Yaus with $f^*(\Omega_{\mathcal{V}}) = \Omega_{\mathcal{U}}$, the tropicalization of f is

$$\begin{aligned} f^{\mathrm{trop}} &: \mathcal{U}^{\mathrm{trop}}(\mathbb{Z}) \to \mathcal{V}^{\mathrm{trop}}(\mathbb{Z}) \\ & \upsilon \mapsto \upsilon \circ f^*. \end{aligned}$$

Assuming the conjecture holds...

Let $f: \mathcal{U} \to \mathcal{V}$ be a map of affine log Calabi-Yaus with maximal boundary satisfying:

If
$$R\left(\vartheta_{\upsilon}: \upsilon \in \mathcal{U}^{\operatorname{trop}}(\mathbb{Z})\right)$$
 is a relation in $A_{\mathcal{U}}$, then $R\left(\vartheta_{f^{\operatorname{trop}}(\upsilon)}: \upsilon \in \mathcal{U}^{\operatorname{trop}}(\mathbb{Z})\right)$ is a relation in $A_{\mathcal{V}}$.

Then $f^{\operatorname{trop}} : \mathcal{U}^{\operatorname{trop}}(\mathbb{Z}) \to \mathcal{V}^{\operatorname{trop}}(\mathbb{Z})$ determines a map of algebras $A_{\mathcal{U}} \to A_{\mathcal{V}}$, and so a map of schemes $f^{\vee} : \mathcal{V}^{\vee} \to \mathcal{U}^{\vee}$.

Proposition (Bossinger, Cheung, M, Nájera Chávez)

Assume the full Fock-Goncharov conjecture holds for A and X and let p be any cluster ensemble map.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proposition (Bossinger, Cheung, M, Nájera Chávez)

Assume the full Fock-Goncharov conjecture holds for ${\cal A}$ and ${\cal X}$ and let p be any cluster ensemble map.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• If $R\left(\vartheta_a: a \in \mathcal{A}^{\operatorname{trop}}(\mathbb{Z})\right)$ is a relation in $A_{\mathcal{A}}$, then $R\left(\vartheta_{p^{\operatorname{trop}}(a)}: a \in \mathcal{A}^{\operatorname{trop}}(\mathbb{Z})\right)$ is a relation in $A_{\mathcal{X}}$.

Proposition (Bossinger, Cheung, M, Nájera Chávez)

Assume the full Fock-Goncharov conjecture holds for ${\cal A}$ and ${\cal X}$ and let p be any cluster ensemble map.

- If $R\left(\vartheta_a: a \in \mathcal{A}^{\operatorname{trop}}(\mathbb{Z})\right)$ is a relation in $A_{\mathcal{A}}$, then $R\left(\vartheta_{p^{\operatorname{trop}}(a)}: a \in \mathcal{A}^{\operatorname{trop}}(\mathbb{Z})\right)$ is a relation in $A_{\mathcal{X}}$.
- There is a choice of cluster structure for \mathcal{A}^{\vee} and \mathcal{X}^{\vee} such that $p^{\vee}: \mathcal{X}^{\vee} \to \mathcal{A}^{\vee}$ is again a cluster ensemble map.

$p^{\vee}: \mathcal{X}^{\vee} \to \mathcal{A}^{\vee}$ as cluster ensemble map

In skew symmetric type, relevant choice of cluster structure is associated to the chiral dual initial data (Γ^{op}, s^{op}) :

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$p^\vee: \mathcal{X}^\vee \to \mathcal{A}^\vee$ as cluster ensemble map

In skew symmetric type, relevant choice of cluster structure is associated to the chiral dual initial data (Γ^{op}, s^{op}) :

• $N_{\Gamma^{\mathrm{op}}} = N_{\Gamma}$, with skew-form $\{\, \cdot\,,\, \cdot\,\}_{\Gamma^{\mathrm{op}}} = -\,\{\, \cdot\,,\, \cdot\,\}_{\Gamma}$

$p^\vee: \mathcal{X}^\vee \to \mathcal{A}^\vee$ as cluster ensemble map

In skew symmetric type, relevant choice of cluster structure is associated to the chiral dual initial data (Γ^{op}, s^{op}) :

• $N_{\Gamma^{\mathrm{op}}} = N_{\Gamma}$, with skew-form $\{\, \cdot\,,\, \cdot\,\}_{\Gamma^{\mathrm{op}}} = -\, \{\, \cdot\,,\, \cdot\,\}_{\Gamma}$

•
$$(N_{\mathrm{uf}})_{\Gamma^{\mathrm{op}}} = (N_{\mathrm{uf}})_{\Gamma}$$

$p^\vee: \mathcal{X}^\vee \to \mathcal{A}^\vee$ as cluster ensemble map

In skew symmetric type, relevant choice of cluster structure is associated to the chiral dual initial data (Γ^{op}, s^{op}) :

• $N_{\Gamma^{\mathrm{op}}} = N_{\Gamma}$, with skew-form $\{\,\cdot\,,\,\cdot\,\}_{\Gamma^{\mathrm{op}}} = -\,\{\,\cdot\,,\,\cdot\,\}_{\Gamma}$

•
$$(N_{\mathrm{uf}})_{\Gamma^{\mathrm{op}}} = (N_{\mathrm{uf}})_{\Gamma}$$

•
$$I_{\Gamma^{\mathrm{op}}} = I_{\Gamma}$$
 and $(I_{\mathrm{uf}})_{\Gamma^{\mathrm{op}}} = (I_{\mathrm{uf}})_{\Gamma}$

In skew symmetric type, relevant choice of cluster structure is associated to the chiral dual initial data (Γ^{op}, s^{op}) :

- $N_{\Gamma^{\mathrm{op}}} = N_{\Gamma}$, with skew-form $\{\, \cdot\, ,\, \cdot\, \}_{\Gamma^{\mathrm{op}}} = -\, \{\, \cdot\, ,\, \cdot\, \}_{\Gamma}$
- $(N_{\mathrm{uf}})_{\Gamma^{\mathrm{op}}} = (N_{\mathrm{uf}})_{\Gamma}$

•
$$I_{\Gamma^{\mathrm{op}}} = I_{\Gamma}$$
 and $(I_{\mathrm{uf}})_{\Gamma^{\mathrm{op}}} = (I_{\mathrm{uf}})_{\Gamma}$

•
$$\mathbf{s}^{\mathrm{op}} = \mathbf{s}$$

In skew symmetric type, relevant choice of cluster structure is associated to the chiral dual initial data (Γ^{op}, s^{op}) :

- $N_{\Gamma^{\mathrm{op}}} = N_{\Gamma}$, with skew-form $\{\, \cdot\, ,\, \cdot\, \}_{\Gamma^{\mathrm{op}}} = -\, \{\, \cdot\, ,\, \cdot\, \}_{\Gamma}$
- $(N_{\mathrm{uf}})_{\Gamma^{\mathrm{op}}} = (N_{\mathrm{uf}})_{\Gamma}$

•
$$I_{\Gamma^{\mathrm{op}}} = I_{\Gamma}$$
 and $(I_{\mathrm{uf}})_{\Gamma^{\mathrm{op}}} = (I_{\mathrm{uf}})_{\Gamma}$

•
$$\mathbf{s}^{\mathrm{op}} = \mathbf{s}$$

Then:

In skew symmetric type, relevant choice of cluster structure is associated to the chiral dual initial data (Γ^{op}, s^{op}) :

- $N_{\Gamma^{\mathrm{op}}} = N_{\Gamma}$, with skew-form $\{\, \cdot\, ,\, \cdot\, \}_{\Gamma^{\mathrm{op}}} = -\, \{\, \cdot\, ,\, \cdot\, \}_{\Gamma}$
- $(N_{\mathrm{uf}})_{\Gamma^{\mathrm{op}}} = (N_{\mathrm{uf}})_{\Gamma}$

•
$$I_{\Gamma^{\mathrm{op}}} = I_{\Gamma}$$
 and $(I_{\mathrm{uf}})_{\Gamma^{\mathrm{op}}} = (I_{\mathrm{uf}})_{\Gamma}$

• $\mathbf{s}^{\mathrm{op}} = \mathbf{s}$

Then:

•
$$\mathcal{X}^{\vee} = \mathcal{A}_{\Gamma^{\mathrm{op}},[\mathbf{s}^{\mathrm{op}}]}$$

In skew symmetric type, relevant choice of cluster structure is associated to the chiral dual initial data (Γ^{op}, s^{op}) :

- $N_{\Gamma^{\mathrm{op}}} = N_{\Gamma}$, with skew-form $\{\, \cdot\, ,\, \cdot\, \}_{\Gamma^{\mathrm{op}}} = -\, \{\, \cdot\, ,\, \cdot\, \}_{\Gamma}$
- $(N_{\mathrm{uf}})_{\Gamma^{\mathrm{op}}} = (N_{\mathrm{uf}})_{\Gamma}$

•
$$I_{\Gamma^{\mathrm{op}}} = I_{\Gamma}$$
 and $(I_{\mathrm{uf}})_{\Gamma^{\mathrm{op}}} = (I_{\mathrm{uf}})_{\Gamma}$

•
$$\mathbf{s}^{\mathrm{op}} = \mathbf{s}$$

Then:

•
$$\mathcal{X}^{\vee} = \mathcal{A}_{\Gamma^{\mathrm{op}}, [\mathbf{s}^{\mathrm{op}}]}$$

• $\mathcal{A}^{\vee} = \mathcal{X}_{\Gamma^{\mathrm{op}}, [\mathbf{s}^{\mathrm{op}}]}$

In skew symmetric type, relevant choice of cluster structure is associated to the chiral dual initial data (Γ^{op}, s^{op}) :

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- $N_{\Gamma^{\mathrm{op}}} = N_{\Gamma}$, with skew-form $\{\, \cdot\, ,\, \cdot\, \}_{\Gamma^{\mathrm{op}}} = -\, \{\, \cdot\, ,\, \cdot\, \}_{\Gamma}$
- $(N_{\mathrm{uf}})_{\Gamma^{\mathrm{op}}} = (N_{\mathrm{uf}})_{\Gamma}$

•
$$I_{\Gamma^{\mathrm{op}}} = I_{\Gamma}$$
 and $(I_{\mathrm{uf}})_{\Gamma^{\mathrm{op}}} = (I_{\mathrm{uf}})_{\Gamma}$

•
$$\mathbf{s}^{\mathrm{op}} = \mathbf{s}$$

Then:

• $\mathcal{X}^{\vee} = \mathcal{A}_{\Gamma^{\mathrm{op}},[\mathbf{s}^{\mathrm{op}}]}$ • $\mathcal{A}^{\vee} = \mathcal{X}_{\Gamma^{\mathrm{op}},[\mathbf{s}^{\mathrm{op}}]}$ • $(p^{\vee})^* : n \mapsto (p^*)^*(n)$

Plabic graphs for $\operatorname{Gr}_{n-k}(\mathbb{C}^n)$ ([Pos06], [RW19])

• A plabic graph G is an undirected graph drawn on a disk with cyclically ordered boundary vertices $(1, \dots, n)$, and each internal vertex either black or white.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Plabic graphs for $\operatorname{Gr}_{n-k}(\mathbb{C}^n)$ ([Pos06], [RW19])

- A plabic graph G is an undirected graph drawn on a disk with cyclically ordered boundary vertices $(1, \dots, n)$, and each internal vertex either black or white.
- The trip T_i is the path from i to some boundary vertex $\pi_G(i)$ consisting of maximal right turns at black vertices and maximal left turns at white vertices.

Plabic graphs for $\operatorname{Gr}_{n-k}(\mathbb{C}^n)$ ([Pos06], [RW19])

- A plabic graph G is an undirected graph drawn on a disk with cyclically ordered boundary vertices $(1, \dots, n)$, and each internal vertex either black or white.
- The trip T_i is the path from i to some boundary vertex $\pi_G(i)$ consisting of maximal right turns at black vertices and maximal left turns at white vertices.
- If G is a "reduced" plabic graph and $\pi_G(i) = i + (n-k)$ for all *i* "G is of **type** $\pi_{k,n}$ "- then the trips assign Plücker labels in $\binom{[n]}{n-k}$ to each face as illustrated in the following example.

Grassmannian cluster structure

Example $(G_{4,9}^{ m rec})$

Grassmannian cluster structure

Example $(G_{4,9}^{\text{rec}})$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

The corresponding Plücker coordinates form a cluster in Scott's \mathcal{A} -cluster structure of $\mathrm{UT}_{\mathrm{Gr}_{n-k}(\mathbb{C}^n)}^{\circ} := \mathrm{UT}_{\mathrm{Gr}_{n-k}(\mathbb{C}^n)} \setminus D$. Here,

The corresponding Plücker coordinates form a cluster in Scott's \mathcal{A} -cluster structure of $\mathrm{UT}_{\mathrm{Gr}_{n-k}(\mathbb{C}^n)}^{\circ} := \mathrm{UT}_{\mathrm{Gr}_{n-k}(\mathbb{C}^n)} \setminus D$. Here,

•
$$D = \sum_{i=1}^{n} D_{[i+1,i+(n-k)]}$$
, where

The corresponding Plücker coordinates form a cluster in Scott's \mathcal{A} -cluster structure of $\mathrm{UT}_{\mathrm{Gr}_{n-k}(\mathbb{C}^n)}^{\circ} := \mathrm{UT}_{\mathrm{Gr}_{n-k}(\mathbb{C}^n)} \setminus D$. Here,

•
$$D = \sum_{i=1}^{n} D_{[i+1,i+(n-k)]}$$
, where

•
$$D_J := \left\{ x \in \mathrm{UT}_{\mathrm{Gr}_{n-k}(\mathbb{C}^n)} : p_J(x) = 0 \right\}.$$

The corresponding Plücker coordinates form a cluster in Scott's \mathcal{A} -cluster structure of $\mathrm{UT}_{\mathrm{Gr}_{n-k}(\mathbb{C}^n)}^{\circ} := \mathrm{UT}_{\mathrm{Gr}_{n-k}(\mathbb{C}^n)} \setminus D$. Here,

•
$$D = \sum_{i=1}^{n} D_{[i+1,i+(n-k)]}$$
, where

•
$$D_J := \{x \in \mathrm{UT}_{\mathrm{Gr}_{n-k}(\mathbb{C}^n)} : p_J(x) = 0\}.$$

The skew form and labeled basis are encoded in a quiver Q(G):

The corresponding Plücker coordinates form a cluster in Scott's \mathcal{A} -cluster structure of $\mathrm{UT}_{\mathrm{Gr}_{n-k}(\mathbb{C}^n)}^{\circ} := \mathrm{UT}_{\mathrm{Gr}_{n-k}(\mathbb{C}^n)} \setminus D$. Here,

•
$$D = \sum_{i=1}^n D_{[i+1,i+(n-k)]}$$
, where

•
$$D_J := \{x \in \mathrm{UT}_{\mathrm{Gr}_{n-k}(\mathbb{C}^n)} : p_J(x) = 0\}.$$

The skew form and labeled basis are encoded in a quiver Q(G):

•
$$\{e_i, e_j\} = \#\{ \text{ arrows } \bullet_i \to \bullet_j\} - \#\{ \text{ arrows } \bullet_j \to \bullet_i\}$$

The corresponding Plücker coordinates form a cluster in Scott's \mathcal{A} -cluster structure of $\mathrm{UT}_{\mathrm{Gr}_{n-k}(\mathbb{C}^n)}^{\circ} := \mathrm{UT}_{\mathrm{Gr}_{n-k}(\mathbb{C}^n)} \setminus D$. Here,

•
$$D=\sum_{i=1}^n D_{[i+1,i+(n-k)]}$$
, where

•
$$D_J := \{x \in \mathrm{UT}_{\mathrm{Gr}_{n-k}(\mathbb{C}^n)} : p_J(x) = 0\}.$$

The skew form and labeled basis are encoded in a quiver Q(G):

•
$$\{e_i, e_j\} = \#\{ \text{ arrows } \bullet_i \to \bullet_j \} - \#\{ \text{ arrows } \bullet_j \to \bullet_i \}$$

Q(G) is constructed as in the following example:

Example ($G_{4,9}^{\text{rec}}$)

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Let G^{op} be the plabic graph obtained by swapping colors of all internal vertices of G.

Let $G^{\rm op}$ be the plabic graph obtained by swapping colors of all internal vertices of G.

• If G is a reduced plabic graph of type $\pi_{k,n}$, then G^{op} is a reduced plabic graph of type $\pi_{n-k,n}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let G^{op} be the plabic graph obtained by swapping colors of all internal vertices of G.

• If G is a reduced plabic graph of type $\pi_{k,n}$, then G^{op} is a reduced plabic graph of type $\pi_{n-k,n}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• We obtain an \mathcal{A} cluster in $\mathrm{UT}_{\mathrm{Gr}_k(\mathbb{C}^n)}$.

Let G^{op} be the plabic graph obtained by swapping colors of all internal vertices of G.

- If G is a reduced plabic graph of type $\pi_{k,n}$, then G^{op} is a reduced plabic graph of type $\pi_{n-k,n}$.
- We obtain an \mathcal{A} cluster in $\mathrm{UT}_{\mathrm{Gr}_k(\mathbb{C}^n)}$.
- The Plücker indices associated to the faces of G and G^{op} are related by $J \mapsto \pi_G(J)^c$.

Let G^{op} be the plabic graph obtained by swapping colors of all internal vertices of G.

- If G is a reduced plabic graph of type $\pi_{k,n}$, then G^{op} is a reduced plabic graph of type $\pi_{n-k,n}$.
- We obtain an \mathcal{A} cluster in $\mathrm{UT}_{\mathrm{Gr}_k(\mathbb{C}^n)}$.
- The Plücker indices associated to the faces of G and G^{op} are related by J → π_G(J)^c.

• We have $Q(G)^{\mathrm{op}} = Q(G^{\mathrm{op}})$ - so $(\Gamma, \mathbf{s}) \mapsto (\Gamma^{\mathrm{op}}, \mathbf{s}^{\mathrm{op}})$.

Example ($(G_{4,9}^{\text{rec}})^{\text{op}}$)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Example ($(G_{4,9}^{\mathrm{rec}})^{\mathrm{op}}$)

Two \mathcal{X} -cluster structures

• If $\mathcal{A}_{\Gamma,[\mathbf{s}]}$ is the \mathcal{A} -cluster variety in $UT_{Gr_{n-k}(\mathbb{C}^n)}$, then the same initial data determines a cluster variety $\mathcal{X}_{\Gamma,[\mathbf{s}]}$.
Two \mathcal{X} -cluster structures

- If A_{Γ,[s]} is the A-cluster variety in UT_{Gr_{n-k}(Cⁿ)}, then the same initial data determines a cluster variety X_{Γ,[s]}.
- A plabic graph G of type π_{k,n} also determines an X variety X^{net}_[G] explicitly embedded in Gr_{n-k} (Cⁿ) in terms of *network parameters*.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• A perfect orientation \mathcal{O} of a plabic graph G is an orientation of its edges such that every black internal vertex has exactly one outgoing edge and every white internal vertex has exactly one incoming edge.

- A perfect orientation \mathcal{O} of a plabic graph G is an orientation of its edges such that every black internal vertex has exactly one outgoing edge and every white internal vertex has exactly one incoming edge.
- If G is of type π_{k,n}, then n k boundary vertices of (G, O) will be sources and the remaining k sinks. Call the source set I_O.

- A perfect orientation \mathcal{O} of a plabic graph G is an orientation of its edges such that every black internal vertex has exactly one outgoing edge and every white internal vertex has exactly one incoming edge.
- If G is of type π_{k,n}, then n k boundary vertices of (G, O) will be sources and the remaining k sinks. Call the source set I_O.
- A flow from $I_{\mathcal{O}}$ to $J \in {[n] \choose n-k}$ is a vertex-disjoint collection of directed paths with sources $I_{\mathcal{O}} \setminus (I_{\mathcal{O}} \cap J)$ and targets $J \setminus (I_{\mathcal{O}} \cap J)$.

- A perfect orientation \mathcal{O} of a plabic graph G is an orientation of its edges such that every black internal vertex has exactly one outgoing edge and every white internal vertex has exactly one incoming edge.
- If G is of type π_{k,n}, then n k boundary vertices of (G, O) will be sources and the remaining k sinks. Call the source set I_O.
- A flow from $I_{\mathcal{O}}$ to $J \in {[n] \choose n-k}$ is a vertex-disjoint collection of directed paths with sources $I_{\mathcal{O}} \setminus (I_{\mathcal{O}} \cap J)$ and targets $J \setminus (I_{\mathcal{O}} \cap J)$.
- To each face v of G, associate a **network parameter** x_v .

- A perfect orientation \mathcal{O} of a plabic graph G is an orientation of its edges such that every black internal vertex has exactly one outgoing edge and every white internal vertex has exactly one incoming edge.
- If G is of type π_{k,n}, then n k boundary vertices of (G, O) will be sources and the remaining k sinks. Call the source set I_O.
- A flow from $I_{\mathcal{O}}$ to $J \in {[n] \choose n-k}$ is a vertex-disjoint collection of directed paths with sources $I_{\mathcal{O}} \setminus (I_{\mathcal{O}} \cap J)$ and targets $J \setminus (I_{\mathcal{O}} \cap J)$.
- To each face v of G, associate a **network parameter** x_v .
- Let the weight of a path ρ, denoted wt(ρ), be the product of all network parameters x_v for v a face to the left of ρ, and let the weight of a flow F- wt(F)- be the product of the weights of all paths ρ in F.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …の�?

Example (The flows from $I_{\mathcal{O}}$ to $\{1, 2, 4, 6, 7\}$)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

$\mathcal{X}_{[G]}^{\mathrm{net}} \subset \mathrm{Gr}_{n-k}\left(\mathbb{C}^n\right) \left(\left[\mathsf{RW19}\right]\right)^k$

Denote the set of faces of G by \mathcal{P}_G .

$\mathcal{X}_{[G]}^{\mathrm{net}} \subset \mathrm{Gr}_{n-k}\left(\mathbb{C}^n\right)$ ([RW19])

Denote the set of faces of G by \mathcal{P}_G . For each (G, \mathcal{O}) of type $\pi_{k,n}$, the torus

$$T_{G,\mathcal{O}} := \operatorname{Spec}\left(\mathbb{C}[x_{\upsilon}^{\pm 1} : \upsilon \in \mathcal{P}_G, \prod_{\upsilon \in \mathcal{P}_G} x_{\upsilon} = 1]\right)$$

embeds into the affine open set where p_{I_O} is non-zero via flow polynomials.

$\mathcal{X}_{[G]}^{\mathrm{net}} \subset \mathrm{Gr}_{n-k}\left(\mathbb{C}^n\right)$ ([RW19])

Denote the set of faces of G by \mathcal{P}_G . For each (G, \mathcal{O}) of type $\pi_{k,n}$, the torus

$$T_{G,\mathcal{O}} := \operatorname{Spec}\left(\mathbb{C}[x_{\upsilon}^{\pm 1} : \upsilon \in \mathcal{P}_G, \prod_{\upsilon \in \mathcal{P}_G} x_{\upsilon} = 1]\right)$$

embeds into the affine open set where $p_{I_{\mathcal{O}}}$ is non-zero via flow polynomials.

Let $\mathcal{F}_{G,\mathcal{O}}(J)$ be the set of flows from $I_{\mathcal{O}}$ to J.

$$\operatorname{Flow}_{G,\mathcal{O}}\left(\frac{p_J}{p_{I_{\mathcal{O}}}}\right) \coloneqq \sum_{F \in \mathcal{F}_{G,\mathcal{O}}(J)} \operatorname{wt}(F)$$

Grassmannian cluster structure

Example

$\mathcal{X}_{[G]}^{\mathrm{net}} \subset \mathrm{Gr}_{n-k}\left(\mathbb{C}^{n} ight)$ ([RW19])

• The network parameters $\{x_v : v \in \mathcal{P}_G\}$ form an \mathcal{X} cluster.

$\mathcal{X}_{\left[G\right]}^{\mathrm{net}} \subset \mathrm{Gr}_{n-k}\left(\mathbb{C}^{n} ight)$ ([RW19])

• The network parameters $\{x_v : v \in \mathcal{P}_G\}$ form an \mathcal{X} cluster.

• Mutation is encoded by the quiver Q(G).

$\mathcal{X}_{[G]}^{\mathrm{net}} \subset \mathrm{Gr}_{n-k}\left(\mathbb{C}^n\right)$ ([RW19])

- The network parameters $\{x_v : v \in \mathcal{P}_G\}$ form an \mathcal{X} cluster.
- Mutation is encoded by the quiver Q(G).
- Caution: {x_v : v ∈ P_G} is not naturally identified with the X cluster of X_{Γ,[s]} associated to G.

$\mathcal{X}_{[G]}^{\mathrm{net}} \subset \mathrm{Gr}_{n-k}\left(\mathbb{C}^n\right)$ ([RW19])

- The network parameters $\{x_v : v \in \mathcal{P}_G\}$ form an \mathcal{X} cluster.
- Mutation is encoded by the quiver Q(G).
- Caution: $\{x_v : v \in \mathcal{P}_G\}$ is not naturally identified with the \mathcal{X} cluster of $\mathcal{X}_{\Gamma,[\mathbf{s}]}$ associated to G.

Remark

All constructions we have described for $\operatorname{Gr}_{n-k}(\mathbb{C}^n)$ apply to $\operatorname{Gr}_k(\mathbb{C}^n)$ as well. In fact, $[(G_{k,n}^{\operatorname{rec}})^{\operatorname{op}}] = [G_{n-k,n}^{\operatorname{rec}}].$

Gross-Hacking-Keel(-Kontsevich) perspective

• Each $D_{[i+1,i+(n-k)]}$ defines a point $\operatorname{ord}_{D_{[i+1,i+(n-k)]}}$ in $(\operatorname{Gr}_{n-k}(\mathbb{C}^n)^{\circ})^{\operatorname{trop}}(\mathbb{Z}).$

Gross-Hacking-Keel(-Kontsevich) perspective

- Each $D_{[i+1,i+(n-k)]}$ defines a point $\operatorname{ord}_{D_{[i+1,i+(n-k)]}}$ in $(\operatorname{Gr}_{n-k}(\mathbb{C}^n)^{\circ})^{\operatorname{trop}}(\mathbb{Z}).$
- As such, it defines a ϑ -function $\vartheta_{\operatorname{ord}_{D_{[i+1,i+(n-k)]}}}$ on the mirror family $\mathcal{Y} \to T_{\operatorname{Cl}(\operatorname{Gr}_{n-k}(\mathbb{C}^n))}$.

Gross-Hacking-Keel(-Kontsevich) perspective

- Each $D_{[i+1,i+(n-k)]}$ defines a point $\operatorname{ord}_{D_{[i+1,i+(n-k)]}}$ in $(\operatorname{Gr}_{n-k}(\mathbb{C}^n)^{\circ})^{\operatorname{trop}}(\mathbb{Z}).$
- As such, it defines a ϑ -function $\vartheta_{\operatorname{ord}_{D_{[i+1,i+(n-k)]}}}$ on the mirror family $\mathcal{Y} \to T_{\operatorname{Cl}(\operatorname{Gr}_{n-k}(\mathbb{C}^n))}$.
- The Landau-Ginzburg potential is $W^{k,n}_{\vartheta} := \sum_{i=1}^{n} \vartheta_{\mathrm{ord}_{D_{[i+1,i+(n-k)]}}}.$

Gross-Hacking-Keel(-Kontsevich) perspective

- Each $D_{[i+1,i+(n-k)]}$ defines a point $\operatorname{ord}_{D_{[i+1,i+(n-k)]}}$ in $(\operatorname{Gr}_{n-k}(\mathbb{C}^n)^{\circ})^{\operatorname{trop}}(\mathbb{Z}).$
- As such, it defines a ϑ -function $\vartheta_{\operatorname{ord}_{D_{[i+1,i+(n-k)]}}}$ on the mirror family $\mathcal{Y} \to T_{\operatorname{Cl}(\operatorname{Gr}_{n-k}(\mathbb{C}^n))}$.
- The Landau-Ginzburg potential is $W^{k,n}_{\vartheta} := \sum_{i=1}^{n} \vartheta_{\operatorname{ord}_{D_{[i+1,i+(n-k)]}}}.$
- Scott described $\mathrm{UT}_{\mathrm{Gr}_{n-k}(\mathbb{C}^n)}$ as a partial compactification of \mathcal{A} by simply allowing frozen variables to vanish. Using this description, \mathcal{Y} will be viewed as \mathcal{A}^{\vee} .

Gross-Hacking-Keel(-Kontsevich) perspective

- Each $D_{[i+1,i+(n-k)]}$ defines a point $\operatorname{ord}_{D_{[i+1,i+(n-k)]}}$ in $(\operatorname{Gr}_{n-k}(\mathbb{C}^n)^{\circ})^{\operatorname{trop}}(\mathbb{Z}).$
- As such, it defines a ϑ -function $\vartheta_{\operatorname{ord}_{D_{[i+1,i+(n-k)]}}}$ on the mirror family $\mathcal{Y} \to T_{\operatorname{Cl}(\operatorname{Gr}_{n-k}(\mathbb{C}^n))}$.
- The Landau-Ginzburg potential is $W^{k,n}_{\vartheta} := \sum_{i=1}^{n} \vartheta_{\mathrm{ord}_{D_{[i+1,i+(n-k)]}}}.$
- Scott described $\mathrm{UT}_{\mathrm{Gr}_{n-k}(\mathbb{C}^n)}$ as a partial compactification of \mathcal{A} by simply allowing frozen variables to vanish. Using this description, \mathcal{Y} will be viewed as \mathcal{A}^{\vee} .
- If the frozen vertex v associated to $p_{[i+1,i+(n-k)]}$ is a source of $Q_{\Gamma,\mathbf{s}}$, then $\left.\vartheta_{\mathrm{ord}_{D_{[i+1,i+(n-k)]}}}\right|_{T_{N;\mathbf{s}^{\mathrm{op}}}} = z^{-e_v}.$

• Marsh-Rietsch potential $W_q^{k,n}$ is a simple expression in terms of Plücker coordinates on $\operatorname{Gr}_k(\mathbb{C}^n)$, where each summand reflects a quantum product of Schubert cocycles for $\operatorname{Gr}_{n-k}(\mathbb{C}^n)$.

(日)

• Marsh-Rietsch potential $W_q^{k,n}$ is a simple expression in terms of Plücker coordinates on $\operatorname{Gr}_k(\mathbb{C}^n)$, where each summand reflects a quantum product of Schubert cocycles for $\operatorname{Gr}_{n-k}(\mathbb{C}^n)$.

• Explicitly,
$$W_q^{k,n} = \sum_{i=1}^n q^{\delta_{i,n-k}} \frac{p_{[i+1,i+k-1]\cup\{i+k+1\}}}{p_{[i+1,i+k]}}$$

• Marsh-Rietsch potential $W_q^{k,n}$ is a simple expression in terms of Plücker coordinates on $\operatorname{Gr}_k(\mathbb{C}^n)$, where each summand reflects a quantum product of Schubert cocycles for $\operatorname{Gr}_{n-k}(\mathbb{C}^n)$.

• Explicitly,
$$W_q^{k,n} = \sum_{i=1}^n q^{\delta_{i,n-k}} \frac{p_{[i+1,i+k-1]\cup\{i+k+1\}}}{p_{[i+1,i+k]}}$$
.
• The summand $\frac{p_{[i+1,i+k-1]\cup\{i+k+1\}}}{p_{[i+1,i+k]}}$ corresponds to the divisor $D_{[i+k+1,i]}$.

• Marsh-Rietsch potential $W_q^{k,n}$ is a simple expression in terms of Plücker coordinates on $\operatorname{Gr}_k(\mathbb{C}^n)$, where each summand reflects a quantum product of Schubert cocycles for $\operatorname{Gr}_{n-k}(\mathbb{C}^n)$.

• Explicitly,
$$W_q^{k,n} = \sum_{i=1}^n q^{\delta_{i,n-k}} \frac{p_{[i+1,i+k-1]\cup\{i+k+1\}}}{p_{[i+1,i+k]}}$$

- The summand $\frac{p_{[i+1,i+k-1]\cup\{i+k+1\}}}{p_{[i+1,i+k]}}$ corresponds to the divisor $D_{[i+k+1,i]}.$
- Plücker coordinates are A variables, so view Gr_{n−k} (ℂⁿ) as a compactification of an X variety and the potential as a function on an A variety.

There is a pair of cluster ensemble lattice maps $(p^*, (p^{\vee})^*)$ with kernels K and K^{\vee} such that:

There is a pair of cluster ensemble lattice maps $(p^*,(p^\vee)^*)$ with kernels K and K^\vee such that:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• K is naturally identified with $Cl(Gr_{n-k}(\mathbb{C}^n))^*$ and K^{\vee} with $Cl(Gr_k(\mathbb{C}^n))^*$

There is a pair of cluster ensemble lattice maps $(p^*, (p^{\vee})^*)$ with kernels K and K^{\vee} such that:

- K is naturally identified with $Cl(Gr_{n-k}(\mathbb{C}^n))^*$ and K^{\vee} with $Cl(Gr_k(\mathbb{C}^n))^*$
- p descends to an isomorphism $\overline{p}: \mathcal{A}/T_K \to \mathcal{X}_{\mathbf{1} \in T_{K^{\vee}}}$ and p^{\vee} to an isomorphism $\overline{p}^{\vee}: \mathcal{X}^{\vee}/T_{K^{\vee}} \to \mathcal{A}_{\mathbf{1} \in T_K}^{\vee}$.

There is a pair of cluster ensemble lattice maps $(p^*, (p^{\vee})^*)$ with kernels K and K^{\vee} such that:

- K is naturally identified with $Cl(Gr_{n-k}(\mathbb{C}^n))^*$ and K^{\vee} with $Cl(Gr_k(\mathbb{C}^n))^*$
- p descends to an isomorphism $\overline{p}: \mathcal{A}/T_K \to \mathcal{X}_{\mathbf{1} \in T_{K^{\vee}}}$ and p^{\vee} to an isomorphism $\overline{p}^{\vee}: \mathcal{X}^{\vee}/T_{K^{\vee}} \to \mathcal{A}_{\mathbf{1} \in T_K}^{\vee}$.

• \overline{p} extends to an automorphism of $\operatorname{Gr}_{n-k}(\mathbb{C}^n)$ and \overline{p}^{\vee} to an automorphism of $\operatorname{Gr}_k(\mathbb{C}^n)$.

There is a pair of cluster ensemble lattice maps $(p^*, (p^{\vee})^*)$ with kernels K and K^{\vee} such that:

- K is naturally identified with $Cl(Gr_{n-k}(\mathbb{C}^n))^*$ and K^{\vee} with $Cl(Gr_k(\mathbb{C}^n))^*$
- p descends to an isomorphism $\overline{p}: \mathcal{A}/T_K \to \mathcal{X}_{\mathbf{1} \in T_{K^{\vee}}}$ and p^{\vee} to an isomorphism $\overline{p}^{\vee}: \mathcal{X}^{\vee}/T_{K^{\vee}} \to \mathcal{A}_{\mathbf{1} \in T_K}^{\vee}$.
- \overline{p} extends to an automorphism of $\operatorname{Gr}_{n-k}(\mathbb{C}^n)$ and \overline{p}^{\vee} to an automorphism of $\operatorname{Gr}_k(\mathbb{C}^n)$.
- $(\overline{p}^{\vee})^*(\vartheta_{\operatorname{ord}_{D_{[i+1,i+(n-k)]}}})$ is the summand of $W_{q=1}^{k,n}$ corresponding to $\overline{p}(D_{[i+1,i+(n-k)]})$ and $\overline{p}^*(\vartheta_{\operatorname{ord}_{D_{[i+1,i+k]}}})$ is the summand of $W_{q=1}^{n-k,n}$ corresponding to $\overline{p}^{\vee}(D_{[i+1,i+k]})$.

There is a pair of cluster ensemble lattice maps $(p^*, (p^{\vee})^*)$ with kernels K and K^{\vee} such that:

- K is naturally identified with $Cl(Gr_{n-k}(\mathbb{C}^n))^*$ and K^{\vee} with $Cl(Gr_k(\mathbb{C}^n))^*$
- p descends to an isomorphism $\overline{p}: \mathcal{A}/T_K \to \mathcal{X}_{\mathbf{1} \in T_{K^{\vee}}}$ and p^{\vee} to an isomorphism $\overline{p}^{\vee}: \mathcal{X}^{\vee}/T_{K^{\vee}} \to \mathcal{A}_{\mathbf{1} \in T_K}^{\vee}$.
- \overline{p} extends to an automorphism of $\operatorname{Gr}_{n-k}(\mathbb{C}^n)$ and \overline{p}^{\vee} to an automorphism of $\operatorname{Gr}_k(\mathbb{C}^n)$.
- $(\overline{p}^{\vee})^*(\vartheta_{\operatorname{ord}_{D_{[i+1,i+(n-k)]}}})$ is the summand of $W_{q=1}^{k,n}$ corresponding to $\overline{p}(D_{[i+1,i+(n-k)]})$ and $\overline{p}^*(\vartheta_{\operatorname{ord}_{D_{[i+1,i+k]}}})$ is the summand of $W_{q=1}^{n-k,n}$ corresponding to $\overline{p}^{\vee}(D_{[i+1,i+k]})$.

If $(k, n) \notin \{(2, 4), (1, n), (n - 1, n)\}$, this pair of maps is unique and both automorphisms are given in terms of pullbacks by $p_J \mapsto p_{J-|J|}$.

Example (k = 3, n = 5)

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Example
$$(k = 3, n = 5)$$

$$W^{2,5}_{\vartheta} = \sum_{i=1}^{5} \vartheta_{\operatorname{ord}_{D_{[i+1,i+3]}}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Example
$$(k = 3, n = 5)$$

 $\vartheta_{\mathrm{ord}_{D_{123}}}\Big|_{T_{N;\mathbf{s}}} = z^{-e_{23}} + z^{-e_{23}-e_{35}}$

Example
$$(k = 3, n = 5)$$

$$W^{2,5}_{\vartheta} = \sum_{i=1}^{5} \vartheta_{\mathrm{ord}_{D_{[i+1,i+3]}}}$$

$$\vartheta_{\mathrm{ord}_{D_{234}}}\Big|_{T_{N;\mathbf{s}}} = z^{-e_{34}}$$
Example
$$(k = 3, n = 5)$$

(ロ)、

Example
$$(k = 3, n = 5)$$

$$W^{2,5}_{\vartheta} = \sum_{i=1}^5 \vartheta_{\mathrm{ord}_{D_{[i+1,i+3]}}}$$

$$\vartheta_{\mathrm{ord}_{D_{145}}}\Big|_{T_{N;\mathbf{s}}} = z^{-e_{15}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Example
$$(k = 3, n = 5)$$

 $\vartheta_{\mathrm{ord}_{D_{125}}}\Big|_{T_{N;\mathbf{s}}} = z^{-e_{12}} + z^{-e_{12}-e_{25}}$

Example
$$(k = 3, n = 5)$$

$$W^{3,5}_{\vartheta} = \sum_{i=1}^{5} \vartheta_{\operatorname{ord}_{D_{[i+1,i+2]}}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Example
$$(k = 3, n = 5)$$

$$W^{3,5}_{\vartheta} = \sum_{i=1}^{5} \vartheta_{\mathrm{ord}_{D_{[i+1,i+2]}}}$$

$$\vartheta_{\mathrm{ord}_{D_{12}}}\Big|_{T_{N;\mathbf{s}^{\mathrm{op}}}} = z^{-e_{125}}$$

Example
$$(k = 3, n = 5)$$

(ロ)、

Example
$$(k = 3, n = 5)$$

(ロ)、

Example
$$(k = 3, n = 5)$$

$$W^{3,5}_{\vartheta} = \sum_{i=1}^{5} \vartheta_{\mathrm{ord}_{D_{[i+1,i+2]}}}$$

$$\vartheta_{\mathrm{ord}_{D_{45}}}\Big|_{T_{N;\mathbf{s}^{\mathrm{op}}}} = z^{-e_{345}}$$

Example
$$(k = 3, n = 5)$$

(ロ)、

Example (Potentials on $\operatorname{Gr}_2\left(\mathbb{C}^5\right)^\circ$)

•
$$\vartheta_{\text{ord}_{D_{123}}}\Big|_{T_{N;\mathbf{s}}} = z^{-e_{23}} + z^{-e_{23}-e_{35}}$$

Example (Potentials on $\operatorname{Gr}_2\left(\mathbb{C}^5\right)^\circ$)

•
$$\vartheta_{\text{ord}_{D_{123}}}\Big|_{T_{N;s}} = z^{-e_{23}} + z^{-e_{23}-e_{35}}$$

• $p^{\vee}(D_{123}) = D_{145} \rightsquigarrow W_q^{2,5}$ summand $\frac{p_{24}}{p_{23}}$

Example (Potentials on $\operatorname{Gr}_2(\mathbb{C}^5)^\circ$)

•
$$\vartheta_{\operatorname{ord}_{D_{123}}}\Big|_{T_{N;s}} = z^{-e_{23}} + z^{-e_{23}-e_{35}}$$

• $p^{\vee}(D_{123}) = D_{145} \rightsquigarrow W_q^{2,5}$ summand $\frac{p_{24}}{p_{23}}$
• $\frac{p_{24}}{p_{23}} = \frac{p_{45}}{p_{35}} + \frac{p_{25}p_{34}}{p_{23}p_{35}} = z^{e_{45}^* - e_{35}^*} + z^{e_{25}^* + e_{34}^* - e_{23}^* - e_{35}^*}$

Example (Potentials on $\operatorname{Gr}_2(\mathbb{C}^5)^\circ$)

$$\begin{array}{l} \bullet \hspace{0.5cm} \vartheta_{\mathrm{ord}_{D_{123}}} \Big|_{T_{N;\mathbf{s}}} = z^{-e_{23}} + z^{-e_{23}-e_{35}} \\ \bullet \hspace{0.5cm} p^{\vee}(D_{123}) = D_{145} \rightsquigarrow W_q^{2,5} \hspace{0.5cm} \text{summand} \hspace{0.5cm} \frac{p_{24}}{p_{23}} \\ \bullet \hspace{0.5cm} \frac{p_{24}}{p_{23}} = \frac{p_{45}}{p_{35}} + \frac{p_{25}p_{34}}{p_{23}p_{35}} = z^{e_{45}^* - e_{35}^*} + z^{e_{25}^* + e_{34}^* - e_{23}^* - e_{35}^*} \\ \bullet \hspace{0.5cm} p^*(-e_{23}) \in e_{25}^* - e_{35}^* + N_{\mathrm{uf}}^{\perp} \hspace{0.5cm} \text{and} \hspace{0.5cm} p^*(-e_{35}) = e_{23}^* + e_{45}^* - e_{25}^* - e_{34}^* \end{array}$$

Example (Potentials on $\operatorname{Gr}_2\left(\mathbb{C}^5\right)^\circ$)

$$\begin{array}{l} \vartheta_{\mathrm{ord}_{D_{123}}} \Big|_{T_{N;\mathbf{s}}} = z^{-e_{23}} + z^{-e_{23}-e_{35}} \\ \mathfrak{o} \ p^{\vee}(D_{123}) = D_{145} \rightsquigarrow W_q^{2,5} \ \mathrm{summand} \ \frac{p_{24}}{p_{23}} \\ \mathfrak{o} \ \frac{p_{24}}{p_{23}} = \frac{p_{45}}{p_{35}} + \frac{p_{25}p_{34}}{p_{23}p_{35}} = z^{e_{45}^* - e_{35}^*} + z^{e_{25}^* + e_{34}^* - e_{23}^* - e_{35}^*} \\ \mathfrak{o} \ p^*(-e_{23}) \in e_{25}^* - e_{35}^* + N_{\mathrm{uf}}^{\perp} \ \mathrm{and} \ p^*(-e_{35}) = e_{23}^* + e_{45}^* - e_{25}^* - e_{34}^* \\ \mathfrak{o} \ \mathrm{With} \ p^*(-e_{23}) = e_{25}^* + e_{34}^* - e_{23}^* - e_{35}^*, \ \mathrm{we} \ \mathrm{get} \\ p^*(z^{-e_{23}} + z^{-e_{23}-e_{35}}) = z^{e_{25}^* + e_{34}^* - e_{23}^* - e_{35}^* + z^{e_{45}^* - e_{35}^*}, \end{array}$$

so
$$p^*(\vartheta_{\text{ord}_{D_{123}}}) = \frac{p_{24}}{p_{23}}.$$

Example (Potentials on $\operatorname{Gr}_2(\mathbb{C}^5)^\circ$)

$$\begin{array}{l} \bullet \hspace{0.5cm} \vartheta_{\mathrm{ord}_{D_{123}}} \Big|_{T_{N;\mathbf{s}}} = z^{-e_{23}} + z^{-e_{23}-e_{35}} \\ \bullet \hspace{0.5cm} p^{\vee}(D_{123}) = D_{145} \rightsquigarrow W_q^{2,5} \hspace{0.5cm} \text{summand} \hspace{0.5cm} \frac{p_{24}}{p_{23}} \\ \bullet \hspace{0.5cm} \frac{p_{24}}{p_{23}} = \frac{p_{45}}{p_{35}} + \frac{p_{25}p_{34}}{p_{23}p_{35}} = z^{e_{45}^* - e_{35}^*} + z^{e_{25}^* + e_{34}^* - e_{23}^* - e_{35}^*} \\ \bullet \hspace{0.5cm} p^*(-e_{23}) \in e_{25}^* - e_{35}^* + N_{\mathrm{uf}}^{\perp} \hspace{0.5cm} \text{and} \hspace{0.5cm} p^*(-e_{35}) = e_{23}^* + e_{45}^* - e_{25}^* - e_{34}^* \\ \bullet \hspace{0.5cm} \text{With} \hspace{0.5cm} p^*(-e_{23}) = e_{25}^* + e_{34}^* - e_{23}^* - e_{35}^*, \hspace{0.5cm} \text{we get} \\ p^*(z^{-e_{23}} + z^{-e_{23}-e_{35}}) = z^{e_{25}^* + e_{34}^* - e_{23}^* - e_{35}^* + z^{e_{45}^* - e_{35}^*}, \end{array}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

so
$$p^*(\vartheta_{\operatorname{ord}_{D_{123}}}) = \frac{p_{24}}{p_{23}}.$$

• Other summands similar.

Example (Potentials on $\operatorname{Gr}_3\left(\mathbb{C}^5\right)^\circ$)

•
$$\vartheta_{\operatorname{ord}_{D_{12}}}\Big|_{T_{N;\mathbf{s}^{\operatorname{op}}}} = z^{-e_{125}}$$

Example (Potentials on $\operatorname{Gr}_3(\mathbb{C}^5)^\circ$)

•
$$\vartheta_{\text{ord}_{D_{12}}}\Big|_{T_{N;\mathbf{s}^{\text{op}}}} = z^{-e_{125}}$$

• $p(D_{12}) = D_{34} \rightsquigarrow \frac{p_{135}}{p_{125}}$

Example (Potentials on $\operatorname{Gr}_3\left(\mathbb{C}^5\right)^\circ$)

•
$$\vartheta_{\text{ord}_{D_{12}}}\Big|_{T_{N;s^{\text{op}}}} = z^{-e_{125}}$$

• $p(D_{12}) = D_{34} \rightsquigarrow \frac{p_{135}}{p_{125}}$
• $(p^{\vee})^*(-e_{125}) \in e_{135}^* + N_{\text{uf}}^{\perp}$

Example (Potentials on $\operatorname{Gr}_3(\mathbb{C}^5)^\circ$)

•
$$\vartheta_{\mathrm{ord}_{D_{12}}}\Big|_{T_{N;s^{\mathrm{op}}}} = z^{-e_{125}}$$

• $p(D_{12}) = D_{34} \rightsquigarrow \frac{p_{135}}{p_{125}}$
• $(p^{\vee})^*(-e_{125}) \in e_{135}^* + N_{\mathrm{uf}}^{\perp}$
• With $(p^{\vee})^*(-e_{125}) = e_{135}^* - e_{125}^*$, we get $(p^{\vee})^*(\vartheta_{\mathrm{ord}_{D_{12}}}) = \frac{p_{135}}{p_{125}}$.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへぐ

Example (Potentials on $\operatorname{Gr}_3\left(\mathbb{C}^5\right)^\circ$)

•
$$\vartheta_{\mathrm{ord}_{D_{12}}}\Big|_{T_{N;\mathbf{s}^{\mathrm{op}}}} = z^{-e_{125}}$$

• $p(D_{12}) = D_{34} \rightsquigarrow \frac{p_{135}}{p_{125}}$
• $(p^{\vee})^*(-e_{125}) \in e_{135}^* + N_{\mathrm{uf}}^{\perp}$
• With $(p^{\vee})^*(-e_{125}) = e_{135}^* - e_{125}^*$, we get $(p^{\vee})^*(\vartheta_{\mathrm{ord}_{D_{12}}}) = \frac{p_{135}}{p_{125}}$.
• Other summands similar.

Corollary (Bossinger, Cheung, M, Nájera Chávez)

Identification of superpotential polytopes for $\operatorname{Gr}_{n-k}(\mathbb{C}^n)$: Fix positive constants c_i for $i \in [1, n]$. Let

$$P = \bigcap_{i} \left\{ x \in \left(\mathcal{A}_{1 \in T_{K}}^{\vee} \right)^{\operatorname{trop}}(\mathbb{R}) : \vartheta_{D_{[i+1,i+(n-k)]}}^{\operatorname{trop}}(x) \ge -c_{i} \right\}$$

and

$$Q = \bigcap_{i} \left\{ a \in \left(\mathcal{X}^{\vee}/T_{K^{\vee}}\right)^{\operatorname{trop}}(\mathbb{R}) : \left(\frac{p_{[i+1,i+(n-k)]\cup\{i+k+1\}}}{p_{[i+1,i+k]}}\right)^{\operatorname{trop}}(a) \ge -c_{i+2k} \right\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Then $(\overline{p}^{\vee})^{\operatorname{trop}}(Q) = P$.

Rietsch-Williams use $\mathcal{X}^{\rm net}$ coordinates to describe their NO bodies and toric degenerations. So:

Theorem (Bossinger, Cheung, M, Nájera Chávez)

The Plücker coordinates whose flow polynomials with respect to $((G_{k,n}^{\text{rec}})^{\text{op}}, \mathcal{O})$ are monomials form precisely the \mathcal{A} cluster of $G_{n-k,n}^{\text{rec}}$.

Theorem (Bossinger, Cheung, M, Nájera Chávez)

The Plücker coordinates whose flow polynomials with respect to $((G_{k,n}^{\text{rec}})^{\text{op}}, \mathcal{O})$ are monomials form precisely the \mathcal{A} cluster of $G_{n-k,n}^{\text{rec}}$. There is an isomorphism $\psi : \mathcal{X}_{[(G_{k,n}^{\text{rec}})^{\text{op}}]}^{\text{net}} \to \mathcal{X}_{[G_{n-k,n}^{\text{rec}}],1}$ that is a monomial transformation which identifies \mathcal{X} variables for mutable indices and gives the following commutative diagram:

Using ψ we can recover the Rietsch-Williams NO bodies and toric degenerations as well.

References

- [FG09] Fock and Goncharov, Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. (4) 42(6), 865–930 (2009).
- [GHK15a] Gross, Hacking and Keel, *Birational geometry of cluster algebras*, Algebr. Geom. **2**(2), 137–175 (2015).
- [GHK15b] Gross, Hacking and Keel, *Mirror symmetry for log Calabi-Yau surfaces I*, Publ. Math. Inst. Hautes Études Sci. **122**, 65–168 (2015).
- [GHKK18] Gross, Hacking, Keel and Kontsevich, *Canonical bases for cluster algebras*, J. Amer. Math. Soc. **31**(2), 497–608 (2018).
 - [MS16] Marsh and Scott, Twists of Plücker coordinates as dimer partition functions, Comm. Math. Phys. 341(3), 821–884 (2016).
 - [Pos06] Postnikov, Total positivity, Grassmannians, and networks, arXiv preprint arXiv:math/0609764 [math.CO] (2006).
 - [RW19] Rietsch and Williams, Newton-Okounkov bodies, cluster duality, and mirror symmetry for Grassmannians, Duke Math. J. 168(18), 3437–3527 (2019).
 - [Sco06] Scott, Grassmannians and cluster algebras, Proc. London Math. Soc.
 (3) 92(2), 345–380 (2006).