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Goal and Background

The Goal

Generalize the polytope construction of projective toric varieties to the
non-toric world

Definition (Toric Variety)

An open immersion T ↪→ X of an algebraic torus such that the action of
T on itself extends to an action of T on X.

One of the simplest classes of objects in algebraic geometry– very
amenable to computations and proofs
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Picture to Generalize

Let T ∼= (C∗)n and M = char(T ).

Want cluster analogue of this:

M is a basis for O(T )

Convexity in MR determines which S ⊂MR define polarized
projective compactifications (X,L) of T

The M -points of S and its dilations give a basis for the section ring
of L
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Cluster Varieties: Context and Definition

Definition (Log Calabi-Yau variety)

A smooth complex variety U with a unique volume form Ω having at worst
a simple pole along any divisor in any compactification of U

Example

Algebraic torus T = (C∗)n, Ω = dz1
z1
∧ · · · ∧ dzn

zn
Fact: If (Y,D) is any toric variety with its toric boundary divisor, then Ω
has a simple pole along each component of D.
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with strict transform of D

U := Y \D is log CY
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Every cone is a chart
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A d-dimensional cone corresponds to a codimension d stratum
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Tropicalization of a log Calabi-Yau variety

Definition

Let (U,Ω) be log CY. A divisorial discrete valuation (ddv)
ν : C(U) \ {0} → Z is a discrete valuation of the form ν = ordD( · )
where D is (a positive multiple of) an irreducible effective divisor in a
variety birational to U .

The integral tropicalization of U is
U trop(Z) := {ν ddv : ν(Ω) < 0} ∪ {0}.

Example

If U = TN , U trop(Z) = N .

Recall that toric divisors are indexed by
cocharacters.



Tropicalization of a log Calabi-Yau variety

Definition

Let (U,Ω) be log CY. A divisorial discrete valuation (ddv)
ν : C(U) \ {0} → Z is a discrete valuation of the form ν = ordD( · )
where D is (a positive multiple of) an irreducible effective divisor in a
variety birational to U . The integral tropicalization of U is
U trop(Z) := {ν ddv : ν(Ω) < 0} ∪ {0}.

Example

If U = TN , U trop(Z) = N .

Recall that toric divisors are indexed by
cocharacters.



Tropicalization of a log Calabi-Yau variety

Definition

Let (U,Ω) be log CY. A divisorial discrete valuation (ddv)
ν : C(U) \ {0} → Z is a discrete valuation of the form ν = ordD( · )
where D is (a positive multiple of) an irreducible effective divisor in a
variety birational to U . The integral tropicalization of U is
U trop(Z) := {ν ddv : ν(Ω) < 0} ∪ {0}.

Example

If U = TN , U trop(Z) = N .

Recall that toric divisors are indexed by
cocharacters.



Tropicalization of a log Calabi-Yau variety

Definition

Let (U,Ω) be log CY. A divisorial discrete valuation (ddv)
ν : C(U) \ {0} → Z is a discrete valuation of the form ν = ordD( · )
where D is (a positive multiple of) an irreducible effective divisor in a
variety birational to U . The integral tropicalization of U is
U trop(Z) := {ν ddv : ν(Ω) < 0} ∪ {0}.

Example

If U = TN , U trop(Z) = N . Recall that toric divisors are indexed by
cocharacters.



Tropicalization of a log Calabi-Yau variety

Remark

We can extend scalars from Z>0 to R>0 in the definition of U trop(Z)
to obtain U trop(R) – the real tropicalization of U .

U trop(R) has a natural piecewise linear structure.

When U = TN , U trop(R) = NR is actually linear.
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Scattering Diagrams (from Gross-Siebert program)

Rough definition

A scattering diagram is a collection of walls in U trop (R).

Wall: Codim 1 rational convex cone, decorated with a scattering
function.

Walls correspond to curve classes in compactifications of U , with
tangency conditions at boundary. Scattering function related to
enumerative invariants of curve class.

Toric case: Codim 1 cone of fan gives 1 dim’l stratum. Enumerative
invariant 0, so scattering function trivial.

In cluster case [GHKK18] give algorithm for building scattering
diagram from simple initial data.
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Scattering Diagrams (from Gross-Siebert program)

Example

Initial Data:

N = Z2

s = (e1, e2)

{e1, e2} = 1

1 + ze
∗
2

1 + z−e
∗
1



Scattering Diagrams (from Gross-Siebert program)

Wall-crossing

Scattering function f on wall d ⊂ n⊥ defines wall-crossing map
pf : zm 7→ zmf±〈m,n〉, with sign determined by crossing direction.

Scattering diagram D consistent if composition of wall-crossing
maps along any path γ depends only on endpoints of γ.

1 + ze
∗
2

1 + z−e
∗
1

γ

ze
∗
1 7→ ze

∗
1

(
1 + ze

∗
2−e∗1

)
Not consistent



Scattering Diagrams (from Gross-Siebert program)

Wall-crossing

Scattering function f on wall d ⊂ n⊥ defines wall-crossing map
pf : zm 7→ zmf±〈m,n〉, with sign determined by crossing direction.

Scattering diagram D consistent if composition of wall-crossing
maps along any path γ depends only on endpoints of γ.

1 + ze
∗
2

1 + z−e
∗
1

γ

ze
∗
1 7→ ze

∗
1

(
1 + ze

∗
2−e∗1

)
Not consistent



Scattering Diagrams (from Gross-Siebert program)

Wall-crossing

Scattering function f on wall d ⊂ n⊥ defines wall-crossing map
pf : zm 7→ zmf±〈m,n〉, with sign determined by crossing direction.

Scattering diagram D consistent if composition of wall-crossing
maps along any path γ depends only on endpoints of γ.

1 + ze
∗
2

1 + z−e
∗
1

γ

ze
∗
1 7→ ze

∗
1

(
1 + ze

∗
2−e∗1

)
Not consistent



Scattering Diagrams (from Gross-Siebert program)

Wall-crossing

Scattering function f on wall d ⊂ n⊥ defines wall-crossing map
pf : zm 7→ zmf±〈m,n〉, with sign determined by crossing direction.

Scattering diagram D consistent if composition of wall-crossing
maps along any path γ depends only on endpoints of γ.

1
+
z e ∗
2 −
e ∗
1

1 + ze
∗
2

1 + z−e
∗
1

γ

zm 7→ zm

Consistent



Scattering Diagrams (from Gross-Siebert program)

Theorem (Gross-Hacking-Keel-Kontsevich, using 2D result of
Kontsevich-Soibelman)

There is a unique (up to equivalence) consistent scattering diagram
associated to every cluster variety.
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ϑ-functions

From broken lines to ϑ-functions

Get “ϑ-function” on U∨ for each p ∈ U trop(Z)– think N is a basis for
O(TM = T∨N ).

Local coordinates for ϑp:

Pick Q ∈ U trop(R). Determines coordinate chart.
Write ϑp as sum of final decorating monomials for broken lines with
initial monomial zp and endpoint Q.
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ϑ-functions

Remark

Consistency ensures that the local expressions for ϑp patch together to
give a global function.



ϑ-function multiplication

Structure constants αrpq

ϑp · ϑq =
∑

r∈Utrop(Z)

αrpqϑr

Theorem (Gross-Hacking-Keel-Kontsevich)

αrpq =
∑

(γ1,γ2)
I(γ1)=p, I(γ2)=q
γ1(0)=γ2(0)=r
F (γ1)+F (γ2)=r

c(γ1) c(γ2)
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Status Report

Want cluster analogue of this:

M is a basis for O(T )

Convexity in MR determines which S ⊂MR define polarized
projective compactifications (X,L) of T

The M -points of S and its dilations give a basis for the section ring
of L

So far have:

U trop(Z) “is” ϑ-basis for O(U∨)
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Convexity in U trop(R)

Question

Is there a convexity notion that says when S ⊂ U trop(R) defines a
compactification of U∨?

When do S and its dilations define a graded ring?

Let’s make this more precise.

Definition (Positive subset)

A closed subset S ⊂ U trop(R) is positive if for every a, b ∈ Z≥0,
p ∈ aS(Z), q ∈ bS(Z), and r ∈ U trop(Z) with αrp,q 6= 0 we have:
r ∈ (a+ b)S.

Question

When is S positive?
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Convexity in U trop(R)

Definition (Broken line convex [Cheung, M., Nájera Chávez])

A closed subset S ⊂ U trop(R) is broken line convex if for every
x, y ∈ S(Q), every broken line segment connecting x and y is entirely
contained in S.

Theorem (Cheung, M., Nájera Chávez)

S is positive if and only if S is broken line convex.



Convexity in U trop(R)

Definition (Broken line convex [Cheung, M., Nájera Chávez])
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Key to proof

The problem

Broken line convexity deals with endpoints of broken line segments.

ϑ-functions are indexed by asymptotic directions of broken lines.

The fix

Give a “jagged path” ([GS16]) type description of ϑ-function
multiplication– contributions come as weighted averages along broken line
segments.
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Status Report

Want cluster analogue of this:

M is a basis for O(T )

Convexity in MR determines which S ⊂MR define polarized
projective compactifications (X,L) of T

The M -points of S and its dilations give a basis for the section ring
of L

The generalization:

U trop(Z) “is” ϑ-basis for O(U∨)

Broken line convexity in U trop(R) determines which S ⊂ U trop(R)
define polarized projective compactifications (X,L) of U∨

The U trop(Z)-points of S and its dilations give a basis for the section
ring of L
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Example (Anticanonical “polytope” of degree 5 del Pezzo surface)
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Newton-Okounkov bodies
+ Lara Bossinger

Usual NO bodies

X a d-dimensional variety

D a divisor on X

RD section ring of D

RD :=
⊕

j≥0Rj , Rj := Γ (X,OX(jD))

ν : RD \ {0} → Zd a valuation

Newton-Okounkov body: ∆ν(D) := conv
(⋃

j≥1
1
j ν(Rj)

)
Important tool for studying toric degenerations

NO body genuinely depends on ν, not just the geometric input (X,D)
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Newton-Okounkov bodies
+ Lara Bossinger

Intrinsic NO bodies for cluster varieties

Assume X \D is a cluster variety (U,Ω), and Ω has a pole along
each component of D

For a regular function f =
∑

q∈(U∨)trop(Z)

aqϑq on U , define

Newtϑ(f) := convBL

{
q ∈ (U∨)trop(Z) : aq 6= 0

}
.

Intrinsic Newton-Okounkov body:

∆ϑ(D) := convBL

(⋃
j≥1

( ⋃
f∈Rj

1

j
Newtϑ(f)

))
.

Each choice of torus chart identifies ∆ϑ(D) with a usual NO body
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Newton-Okounkov bodies
+ Lara Bossinger

An advantage of intrinsic NO bodies

While conceptually a bit more high-tech, often simpler object in
practice.

Often for some ν, ∆ν(D) = conv
(⋃kν

j=1
1
j ν(Rj)

)
, where kν is finite.

In this case, ∆ϑ(D) = convBL

(⋃k
j=1

(⋃
f∈Rj

1
j Newtϑ(f)

))
for

some k ≤ min {kν : ν valuation associated to choice of torus chart}
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Newton-Okounkov bodies
+ Lara Bossinger

Example ( X = Grk (Cn), D generator of Cl(X) )

[RW19] define valuations ν and NO bodies ∆ν(D) for each choice of
torus chart

Show in certain charts, ∆ν(D) = conv
{
ν(pJ) : J ∈

([n]
k

)}
Each pJ is a ϑ-function ϑqJ , and always have

∆ϑ(D) = convBL

{
qJ : J ∈

([n]
k

)}
Analogous result holds for complete flag variety
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Batyrev Duality for Cluster Varieties?
Based on joint works in various stages of completion involving the following people: Lara
Bossinger, Man-Wai Cheung, Bosco Fŕıas Medina, and Alfredo Nájera Chávez

Basic Definitions

Definition (Cartier divisor)

A divisor D on a normal variety X is Cartier if D is locally principal,
meaning there is an open cover {Ui} of X with D|Ui the divisor
associated to zeros and poles of a rational function for all Ui.

Definition (Gorenstein Fano variety)

A normal variety X is Gorenstein Fano if −KX is Cartier ( Gorenstein)
and ample ( Fano).
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Batyrev Duality for Cluster Varieties?

Review of Toric Case

Toric anticanonical divisor

Let X be a normal toric variety defined by a fan Σ in NR. Then

−KX =
∑

ρ∈Σ(1)

Dρ.

Gorenstein condition

−KX is Cartier ⇐⇒ for every maximal cone σ ∈ Σ, there is an mσ ∈M
with 〈mσ, nρ〉 = 1 for all ρ ∈ σ(1).

(In this case, −KX |Uσ = (zmσ).)
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Batyrev Duality for Cluster Varieties?

Review of Toric Case

Definition (Polytope of a divisor)

Let D =
∑

ρ∈Σ(1) aρDρ be a toric divisor on X. Then

PD := {m ∈MR : 〈m,nρ〉 ≥ −aρ for all ρ ∈ Σ(1)} .

Definition (Reflexive polytope)

A lattice polytope P ⊂MR is reflexive if its dual

P ◦ := {n ∈ NR : 〈m,n〉 ≥ −1 for all m ∈ P}

is also a lattice polytope.
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Batyrev Duality for Cluster Varieties?

Review of Toric Case

Polytopes and toric Fanos

If X is a d-dimensional Gorenstein Fano toric variety, then P−KX is a
d-dimensional reflexive polytope.

If P is a d-dimensional reflexive polytope, then the projective toric
variety associated to P is Gorenstein Fano.

Calabi-Yau hypersurfaces

Let X be a Gorenstein Fano toric variety, and D ∈ |−KX |. By the
adjunction formula KD = (KX +D)|D = 0.

The Gorenstein property
implies generic D have at worst canonical singularities. So |−KX | consists
of mildly singular Calabi-Yau hypersurfaces of X.
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Batyrev Duality for Cluster Varieties?

Review of Toric Case

Batyrev’s conjecture

The involution P 7→ P ◦ on the set of d-dimensional reflexive polytopes
agrees with the mirror involution on conformal field theories associated to
Calabi-Yau hypersurfaces of the Gorenstein Fano toric varieties defined by
P and P ◦.

Relation to Landau-Ginzburg models

X ⊃ T Gorenstein Fano toric variety, −KX =
∑

iDni

The LG potential W : T∨ → C is W =
∑

i z
ni .

P−KX =
{
m ∈MR : W trop(m) ≥ −1

}
.

P ◦−KX = Newt(W ).

Level sets of W almost CY, but not compact. P ◦ defines Gorenstein Fano
Y ⊃ T∨, with W a section of the anticanonical bundle of Y .
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P and P ◦.

Relation to Landau-Ginzburg models

X ⊃ T Gorenstein Fano toric variety, −KX =
∑

iDni

The LG potential W : T∨ → C is W =
∑

i z
ni .

P−KX =
{
m ∈MR : W trop(m) ≥ −1

}
.

P ◦−KX = Newt(W ).

Level sets of W almost CY, but not compact. P ◦ defines Gorenstein Fano
Y ⊃ T∨, with W a section of the anticanonical bundle of Y .
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The Cluster Case

Landau-Ginzburg model and anticanonical “polytope”

(X,D) Fano minimal model of cluster variety U , with D =
∑

iDνi .

The LG mirror is W =
∑

i ϑνi : U∨ → C.

Z-points of rP :=
{
p ∈ (U∨)trop(R) : W trop(p) ≥ −r

}
parametrize

ϑ-basis for Γ(X,OX(rD)).

The tropical pairing

U trop(Z) is by definition divisorial discrete valuations on C(U) \ {0}.
(U∨)trop(Z) parametrizes ϑ-functions on U .

Restriction of evaluation pairing gives

〈 · , · 〉 : U trop(Z)× (U∨)trop(Z)→ Z
( ν , p ) 7→ ν(ϑp)
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The Cluster Case

Dual “polytope” and the potential

Define Newtϑ(W ) := convBL(νi) ⊂ U trop(R).

For S ⊂ U trop(R), define
S◦ :=

{
p ∈ (U∨)trop(R) : 〈ν, p〉 ≥ −1 for all ν ∈ S(Q)

}
.

Theorem: Newtϑ(W )◦(Q) = P (Q).

Proposed dual

Newtϑ(W ) defines a minimal model (Y,D′) for U∨.

Guess: Generic sections of OX(D) and OY (D′) are mirror (mildly
singular) Calabi-Yau varieties.
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Batyrev Duality for Cluster Varieties?

Main complications

Cl(U) may not be trivial.

Much of the theory of toric varieties relies up Cl(T ) = 0.
Hope max boundary condition prevents Cl(U) from being too large.

Hard to tell when
Γ(X,OX(aD))⊗ Γ(X,OX(bD))→ Γ(X,OX((a+ b)D)) is
surjective.

Easy to say when ϑr contributes to ϑp · ϑq.

When can we write ϑr as
∑

p∈aP (Z)
q∈bP (Z)

cp,q ϑp · ϑq?
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Connecting the applications
EPSRC grant to pursue with Konstanze Rietsch

Question

Consider

X representation theoretically interesting Fano variety, e.g. flag
variety or Grassmannian

D ⊂ X anticanonical divisor

U := X \D a cluster variety

∆ϑ(D) the intrinsic Newton-Okounkov body of (X,D)

∆ϑ(D)◦ defines Batyrev dual pair (Y,D′) with Y \D′ = U∨.
Question: How is the geometry of (Y,D′) related to the representation
theory of (X,D)?
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