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Cluster varieties

Log Calabi-Yau varieties

Reminder

A Calabi-Yau variety is a complex projective variety with trivial
canonical bundle.

A Calabi-Yau variety has a unique (up to scaling) holomorphic
volume form.

A log Calabi-Yau variety is the not-necessarily compact
generalization of a Calabi-Yau variety.

Moral definition

A log Calabi-Yau variety is smooth complex variety U with a
unique (up to scaling) volume form Ω having at worst a simple
pole along any divisor in any compactification of U .
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Cluster varieties

Log Calabi-Yau varieties

Fact (Follows from results of Iitaka)

Let (Y1, D1) and (Y2, D2) be a smooth projective variety Yi with a
normal crossing divisor Di, such that Y1 \D1 = Y2 \D2 =: U .
Then the subspaces Γ(Y1, ωY1(D1)

⊗i) ⊂ Γ(U, ω⊗iU ) and
Γ(Y2, ωY2(D2)

⊗i) ⊂ Γ(U, ω⊗iU ) are the same for all i.

Actual definition

A log Calabi-Yau variety is a smooth complex variety U such
that for (Y,D) as above, the subspace
Γ(Y, ωY (D)⊗i) ⊂ Γ(U, ω⊗iU ) is one dimensional and generated by
Ω⊗i for all i for some volume form Ω ∈ Γ(U, ωU ).
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Cluster varieties

Examples

Example 1

Algebraic torus U = T = (C∗)n, Ω = dz1
z1
∧ · · · ∧ dzn

zn
.

If (Y,D) is any toric variety with toric boundary divisor, Ω has a
simple pole along each component of D.
Proof sketch:
Let φ ∈ SLn(Z). Then dzφ(e1)

zφ(e1)
∧ · · · ∧ dzφ(en)

zφ(en) = dz1
z1
∧ · · · ∧ dzn

zn
= Ω.

Divisorial components of the toric boundary are of the form
{zm = 0} where m is a primitive element of the character lattice.
We can choose φ such that φ(e1) = m.

Remark

If (U,Ω) is any log Calabi-Yau, the “interesting” compactifications
mirror this toric example. A compactification (Y,D) of U is called
a minimal model for U if Ω has a pole along each divisorial
component of D.
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Examples

Example 2

Let (Y ,D) be a toric variety, and let H ⊂ D be a codimension 2
locus in the boundary. Now take (Y,D) to be the blow-up of Y
along H together with the strict transform of D. Then U := Y \D
is log Calabi-Yau (with volume form the pullback of the toric
volume form), and (Y,D) is a partial minimal model for U .
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Examples

Example 3

Let U be a union of tori of the form

U =
⋃
i

Ti/ ∼

µij : Ti 99K Tj , µ∗ij (Ωj) = Ωi

Then the volume forms on each Ti patch together to give a global
volume form and U is log Calabi-Yau.
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Cluster varieties

Examples 2 and 3 are two ways to describe a cluster variety.

Relating the constructions in an example

Let (Y,D) be the del Pezzo surface of degree 5 with an
anticanonical cycle of 5 lines.

From Example 2 to Example 3:
Recall that Y is the blowup of P 2 at four points in general
position.
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More precise definitions

Remark

Examples 2 and 3 are more general than usual definitions of cluster
varieties.

Example 2

Let (Y ,D) be a toric variety, and let H ⊂ D be a codimension 2
locus in the boundary. Now take (Y,D) to be the blow-up of Y
along H together with the strict transform of D. Then
U := Y \D is (with volume form the pullback of the toric
volume form), and (Y,D) is a partial minimal model for U .
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More precise definitions

Remark

Examples 2 and 3 are more general than usual definitions of cluster
varieties.

Definition

Let (Y ,D) be a toric variety with D a disjoint union of
codimension 1 tori, and let H ⊂ D be a union of subtori
{zw = −1} ⊂ TN/Z·n for some w ∈ n⊥, n the cocharacter defining

a component of D. Now take (Y,D) to be the blow-up of Y along
H together with the strict transform of D. Then U := Y \D is
cluster log Calabi-Yau (with volume form the pullback of the
toric volume form), and (Y,D) is a partial minimal model for U .
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More precise definitions

Cluster data

Lattice N ∼= Zn

Skew-form { · , · } : N ×N → Z
Basis s = (e1, . . . , en)

The A-variety as a cluster log CY

Set Σs,A := {R≥0 · ei : 1 ≤ i ≤ n} ∪ {0}, and let
vi := {ei, · } ∈M . Blow-up each Dei along {1 + zvi = 0}.

The X -variety as cluster log CY

Set Σs,X := {−R≥0 · vi : 1 ≤ i ≤ n} ∪ {0}. Blow-up each D−vi
along {1 + zei = 0}.
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More precise definitions

The A-variety as a union

Mutation µk : TN ;s 99K TN ;s′ defined in terms of pullback of

functions: µ∗k(z
m) = zm (1 + zvk)−〈m,ek〉. Now set

A :=
⋃
s

TN ;s/ ∼.

The X -variety as a union

Mutation µk : TM ;s 99K TM ;s′ defined in terms of pullback of

functions: µ∗k(z
n) = zn (1 + zek)−{n,ek}. Now set

X :=
⋃
s

TM ;s/ ∼.
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Mirror conjecture

Conjecture of Gross-Hacking-Keel [GHK15b]

Let U be an affine log Calabi-Yau with maximal boundary

. Then
the mirror U∨ is again an affine log Calabi-Yau with maximal
boundary. The integral tropical points of U parametrize a basis of
ϑ-functions on U∨, with multiplication given explicitly in terms of
broken line counts.
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Conjecture of Gross-Hacking-Keel [GHK15b]

Let U be an affine log Calabi-Yau with maximal boundary. Then
the mirror U∨ is again an affine log Calabi-Yau with maximal
boundary. The integral tropical points of U parametrize a basis of
ϑ-functions on U∨, with multiplication given explicitly in terms of
broken line counts.

Remark

There are multiple precise log Calabi-Yau mirror symmetry
conjectures in arXiv version 1 of [GHK15b].
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the mirror U∨ is again an affine log Calabi-Yau with maximal
boundary. The integral tropical points of U parametrize a basis of
ϑ-functions on U∨, with multiplication given explicitly in terms of
broken line counts.

Cluster case

If U is a cluster variety, this is a corrected form of a conjecture of
Fock-Goncharov.

This is established for “Fock-Goncharov dual”
cluster varieties satisfying certain affineness conditions in
[GHKK18]. Let’s try to understand the conjecture.
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Cluster varieties

Tropicalization

Definition

Let (U,Ω) be log CY. A divisorial discrete valuation (ddv)
ν : C(U) \ 0→ Z is a discrete valuation of the form ν = ordD( · )
where D is (a positive multiple of) an irreducible effective divisor
in a variety birational to U .

The integral tropicalization of U is
U trop(Z) := {ν ddv : ν(Ω) < 0} ∪ {0}.

Example 4

If U = TN , U trop(Z) = N .

Recall that toric divisors are indexed by
cocharacters.
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Tropicalization

Remark

We can extend scalars from Z>0 to R>0 in the definition of
U trop(Z) to obtain U trop(R) – the real tropicalization of U .

U trop(R) has a natural piecewise linear structure.

When U = TN , U trop(R) = NR is actually linear.
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Cluster varieties

Scattering Diagrams and Broken Lines

Rough definition

A scattering diagram is a collection of walls in U trop (R).

Wall: Codim 1 rational convex cone, decorated with a scattering
function that determines a mutation map.

Example 5

N = Z2

s = (e1, e2)

{e1, e2} = 1

1 + ze
∗
2

1 + z−e
∗
1
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Scattering Diagrams and Broken Lines

Wall-crossing

The scattering function f is of the form 1 +
∑

k ckz
k{n, · } and

defines a wall-crossing map pf : zm 7→ zmf±〈m,n〉, with sign
determined by crossing direction.

The scattering diagram D is
consistent if the composition of wall-crossing maps along any
path γ depends only on the endpoints of γ.

1 + ze
∗
2

1 + z−e
∗
1

γ

ze
∗
1 7→ ze

∗
1

(
1 + ze

∗
2−e∗1

)
Not consistent



Cluster varieties

Scattering Diagrams and Broken Lines

Wall-crossing

The scattering function f is of the form 1 +
∑

k ckz
k{n, · } and

defines a wall-crossing map pf : zm 7→ zmf±〈m,n〉, with sign
determined by crossing direction. The scattering diagram D is
consistent if the composition of wall-crossing maps along any
path γ depends only on the endpoints of γ.

1 + ze
∗
2

1 + z−e
∗
1

γ

ze
∗
1 7→ ze

∗
1

(
1 + ze

∗
2−e∗1

)
Not consistent



Cluster varieties

Scattering Diagrams and Broken Lines

Wall-crossing

The scattering function f is of the form 1 +
∑

k ckz
k{n, · } and

defines a wall-crossing map pf : zm 7→ zmf±〈m,n〉, with sign
determined by crossing direction. The scattering diagram D is
consistent if the composition of wall-crossing maps along any
path γ depends only on the endpoints of γ.

1 + ze
∗
2

1 + z−e
∗
1

γ

ze
∗
1 7→ ze

∗
1

(
1 + ze

∗
2−e∗1

)
Not consistent



Cluster varieties

Scattering Diagrams and Broken Lines

Wall-crossing

The scattering function f is of the form 1 +
∑

k ckz
k{n, · } and

defines a wall-crossing map pf : zm 7→ zmf±〈m,n〉, with sign
determined by crossing direction. The scattering diagram D is
consistent if the composition of wall-crossing maps along any
path γ depends only on the endpoints of γ.

1
+
z e ∗
2 −
e ∗
1

1 + ze
∗
2

1 + z−e
∗
1

γ

zm 7→ zm

Consistent
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Scattering Diagrams and Broken Lines

Theorem (Gross-Hacking-Keel-Kontsevich)

There is a unique (up to equivalence) scattering diagram
associated to every cluster variety.
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Scattering Diagrams and Broken Lines

Definition

A broken line is a piecewise linear map γ : (−∞, 0] : U trop(R)
bending only at walls and having finitely many domains of linearity,
which is decorated with a Laurent monomial cz−γ

′(t) along each
linear segment. The coefficient for unbounded segment is 1, and
all other decorations are monomial summands arising from
wall-crossing.
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Scattering Diagrams and Broken Lines

1
+
z e ∗

2 −
e ∗
1

1 + ze
∗
2

1 + z−e
∗
1

z−e
∗
1 z−e

∗
1

z e ∗
2 −
e ∗
1



Cluster varieties

ϑ-functions

From broken lines to ϑ-functions

Get “ϑ-function” on U∨ for each p ∈ U trop(Z)– think N is a
basis for O(TM = T∨N ).

Local coordinates for ϑp: pick Q ∈ U trop(R). Write ϑp as
sum of decorating monomials of broken lines starting from
direction p and ending at Q.
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ϑ-functions

ϑ−e∗1 = ze
∗
2−e∗1 + z−e

∗
1

1
+
z e ∗

2 −
e ∗
1

1 + ze
∗
2

1 + z−e
∗
1

Q
z−e

∗
1

z e ∗
2 −
e ∗
1

z−e
∗
1

z−e
∗
1
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Cluster varieties

ϑ-function multiplication

Structure constants αrpq

ϑp · ϑq =
∑

r∈Utrop(Z)

αrpqϑr

Theorem (Gross-Hacking-Keel-Kontsevich)

αrpq =
∑

(γ1,γ2)
I(γ1)=p, I(γ2)=q
γ1(0)=γ2(0)=r
F (γ1)+F (γ2)=r

c(γ1) c(γ2)
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ϑ-function multiplication

Example

z(−1,0)

z(−1,0) z (−
1,1)

z
(2,

1)
z
(2,

1)

(1, 1)

(1, 2)

ϑ(−1,0) · ϑ(2,1) = ϑ(1,1) + ϑ(1,2)



Cluster varieties

Returning to the conjecture

Conjecture (Gross-Hacking-Keel)

Let U be an affine log Calabi-Yau with maximal boundary. Then

1 we have an algebra A with basis U trop(Z), where
multiplication is given by broken line counts, and

2 Spec(A) = U∨.
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Cluster varieties

Returning to the conjecture

What’s known?

If U is a cluster variety, A is constructed in [GHKK18].

It is a
basis for regular functions on the “Fock-Goncharov dual”
cluster variety, which is expected to be the mirror.

If U contains an open torus, A is constructed [KY19], and
they prove “the Frobenius structure conjecture” in this setting.

Similar results are proved for the blowup of a toric variety
along hypersurfaces in the toric boundary, combining [GS19]
and [AG20].
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