**Timothy Magee** 

After [GHK15a] and [GHKK18]

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

### Reminder

A **Calabi-Yau variety** is a complex projective variety with trivial canonical bundle.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

#### Reminder

A **Calabi-Yau variety** is a complex projective variety with trivial canonical bundle.

• A Calabi-Yau variety has a unique (up to scaling) holomorphic volume form.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

#### Reminder

A **Calabi-Yau variety** is a complex projective variety with trivial canonical bundle.

• A Calabi-Yau variety has a unique (up to scaling) holomorphic volume form.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• A log Calabi-Yau variety is the not-necessarily compact generalization of a Calabi-Yau variety.

#### Reminder

A **Calabi-Yau variety** is a complex projective variety with trivial canonical bundle.

- A Calabi-Yau variety has a unique (up to scaling) holomorphic volume form.
- A log Calabi-Yau variety is the not-necessarily compact generalization of a Calabi-Yau variety.

### Moral definition

A log Calabi-Yau variety is smooth complex variety U with a unique (up to scaling) volume form  $\Omega$  having at worst a simple pole along any divisor in *any* compactification of U.

#### Fact (Follows from results of litaka)

Let  $(Y_1, D_1)$  and  $(Y_2, D_2)$  be a smooth projective variety  $Y_i$  with a normal crossing divisor  $D_i$ , such that  $Y_1 \setminus D_1 = Y_2 \setminus D_2 =: U$ . Then the subspaces  $\Gamma(Y_1, \omega_{Y_1}(D_1)^{\otimes i}) \subset \Gamma(U, \omega_U^{\otimes i})$  and  $\Gamma(Y_2, \omega_{Y_2}(D_2)^{\otimes i}) \subset \Gamma(U, \omega_U^{\otimes i})$  are the same for all i.

#### Fact (Follows from results of litaka)

Let  $(Y_1, D_1)$  and  $(Y_2, D_2)$  be a smooth projective variety  $Y_i$  with a normal crossing divisor  $D_i$ , such that  $Y_1 \setminus D_1 = Y_2 \setminus D_2 =: U$ . Then the subspaces  $\Gamma(Y_1, \omega_{Y_1}(D_1)^{\otimes i}) \subset \Gamma(U, \omega_U^{\otimes i})$  and  $\Gamma(Y_2, \omega_{Y_2}(D_2)^{\otimes i}) \subset \Gamma(U, \omega_U^{\otimes i})$  are the same for all i.

#### Actual definition

A log Calabi-Yau variety is a smooth complex variety U such that for (Y, D) as above, the subspace  $\Gamma(Y, \omega_Y(D)^{\otimes i}) \subset \Gamma(U, \omega_U^{\otimes i})$  is one dimensional and generated by  $\Omega^{\otimes i}$  for all i for some volume form  $\Omega \in \Gamma(U, \omega_U)$ .

## Example 1

Algebraic torus 
$$U = T = (\mathbb{C}^*)^n$$
,  $\Omega = \frac{dz_1}{z_1} \wedge \cdots \wedge \frac{dz_n}{z_n}$ .

(ロ)、(型)、(E)、(E)、 E) の(()

### Example 1

Algebraic torus  $U = T = (\mathbb{C}^*)^n$ ,  $\Omega = \frac{dz_1}{z_1} \wedge \cdots \wedge \frac{dz_n}{z_n}$ . If (Y, D) is any toric variety with toric boundary divisor,  $\Omega$  has a simple pole along each component of D.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

#### Example 1

Algebraic torus  $U = T = (\mathbb{C}^*)^n$ ,  $\Omega = \frac{dz_1}{z_1} \wedge \cdots \wedge \frac{dz_n}{z_n}$ . If (Y, D) is any toric variety with toric boundary divisor,  $\Omega$  has a simple pole along each component of D. **Proof sketch:** Let  $\phi \in \operatorname{SL}_n(\mathbb{Z})$ . Then  $\frac{dz^{\phi(e_1)}}{z^{\phi(e_1)}} \wedge \cdots \wedge \frac{dz^{\phi(e_n)}}{z^{\phi(e_n)}} = \frac{dz_1}{z_1} \wedge \cdots \wedge \frac{dz_n}{z_n} = \Omega$ . Divisorial components of the toric boundary are of the form  $\{z^m = 0\}$  where m is a primitive element of the character lattice. We can choose  $\phi$  such that  $\phi(e_1) = m$ .

#### Example 1

Algebraic torus  $U = T = (\mathbb{C}^*)^n$ ,  $\Omega = \frac{dz_1}{z_1} \wedge \cdots \wedge \frac{dz_n}{z_n}$ . If (Y, D) is any toric variety with toric boundary divisor,  $\Omega$  has a simple pole along each component of D. **Proof sketch:** Let  $\phi \in \operatorname{SL}_n(\mathbb{Z})$ . Then  $\frac{dz^{\phi(e_1)}}{z^{\phi(e_1)}} \wedge \cdots \wedge \frac{dz^{\phi(e_n)}}{z^{\phi(e_n)}} = \frac{dz_1}{z_1} \wedge \cdots \wedge \frac{dz_n}{z_n} = \Omega$ . Divisorial components of the toric boundary are of the form  $\{z^m = 0\}$  where m is a primitive element of the character lattice. We can choose  $\phi$  such that  $\phi(e_1) = m$ .

Remark

If  $(U, \Omega)$  is any log Calabi-Yau, the "interesting" compactifications mirror this toric example. A compactification (Y, D) of U is called a **minimal model** for U if  $\Omega$  has a pole along each divisorial component of D.

#### Example 1

Algebraic torus  $U = T = (\mathbb{C}^*)^n$ ,  $\Omega = \frac{dz_1}{z_1} \wedge \cdots \wedge \frac{dz_n}{z_n}$ . If (Y, D) is any toric variety with toric boundary divisor,  $\Omega$  has a simple pole along each component of D. **Proof sketch:** Let  $\phi \in \operatorname{SL}_n(\mathbb{Z})$ . Then  $\frac{dz^{\phi(e_1)}}{z^{\phi(e_1)}} \wedge \cdots \wedge \frac{dz^{\phi(e_n)}}{z^{\phi(e_n)}} = \frac{dz_1}{z_1} \wedge \cdots \wedge \frac{dz_n}{z_n} = \Omega$ . Divisorial components of the toric boundary are of the form  $\{z^m = 0\}$  where m is a primitive element of the character lattice.

We can choose  $\phi$  such that  $\phi(e_1) = m$ .

#### Remark

If  $(U, \Omega)$  is any log Calabi-Yau, the "interesting" compactifications mirror this toric example. A partial compactification (Y, D) of U is called a **partial minimal model** for U if  $\Omega$  has a pole along each divisorial component of D.

### Example 2

Let  $(\overline{Y}, \overline{D})$  be a toric variety, and let  $H \subset D$  be a codimension 2 locus in the boundary. Now take (Y, D) to be the blow-up of  $\overline{Y}$ along H together with the strict transform of  $\overline{D}$ . Then  $U := Y \setminus D$ is log Calabi-Yau (with volume form the pullback of the toric volume form), and (Y, D) is a partial minimal model for U.

### Example 3

Let U be a union of tori of the form

$$U = \bigcup_i T_i / \sim$$

$$\mu_{ij}: T_i \dashrightarrow T_j, \qquad \mu_{ij}^*(\Omega_j) = \Omega_i$$

Then the volume forms on each  $T_i$  patch together to give a global volume form and U is log Calabi-Yau.

• Examples 2 and 3 are two ways to describe a cluster variety.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Examples 2 and 3 are two ways to describe a cluster variety.

#### Relating the constructions in an example

Let  $\left(Y,D\right)$  be the del Pezzo surface of degree 5 with an anticanonical cycle of 5 lines.

• Examples 2 and 3 are two ways to describe a cluster variety.

### Relating the constructions in an example

Let (Y, D) be the del Pezzo surface of degree 5 with an anticanonical cycle of 5 lines.

### From Example 2 to Example 3:

• Examples 2 and 3 are two ways to describe a cluster variety.

### Relating the constructions in an example

Let (Y, D) be the del Pezzo surface of degree 5 with an anticanonical cycle of 5 lines.

### From Example 2 to Example 3:



• Examples 2 and 3 are two ways to describe a cluster variety.

### Relating the constructions in an example

Let (Y, D) be the del Pezzo surface of degree 5 with an anticanonical cycle of 5 lines.

### From Example 2 to Example 3:



• Examples 2 and 3 are two ways to describe a cluster variety.

### Relating the constructions in an example

Let (Y, D) be the del Pezzo surface of degree 5 with an anticanonical cycle of 5 lines.

### From Example 2 to Example 3:



• Examples 2 and 3 are two ways to describe a cluster variety.

### Relating the constructions in an example

Let (Y, D) be the del Pezzo surface of degree 5 with an anticanonical cycle of 5 lines.

### From Example 2 to Example 3:



• Examples 2 and 3 are two ways to describe a cluster variety.

### Relating the constructions in an example

Let (Y, D) be the del Pezzo surface of degree 5 with an anticanonical cycle of 5 lines.

## From Example 2 to Example 3:



• Examples 2 and 3 are two ways to describe a cluster variety.

### Relating the constructions in an example

Let (Y, D) be the del Pezzo surface of degree 5 with an anticanonical cycle of 5 lines.

## From Example 2 to Example 3:

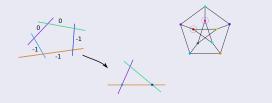


• Examples 2 and 3 are two ways to describe a cluster variety.

### Relating the constructions in an example

Let (Y, D) be the del Pezzo surface of degree 5 with an anticanonical cycle of 5 lines.

### From Example 2 to Example 3:

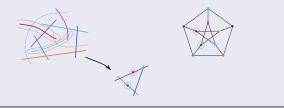


• Examples 2 and 3 are two ways to describe a cluster variety.

### Relating the constructions in an example

Let (Y, D) be the del Pezzo surface of degree 5 with an anticanonical cycle of 5 lines.

## From Example 2 to Example 3:

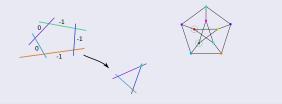


• Examples 2 and 3 are two ways to describe a cluster variety.

### Relating the constructions in an example

Let (Y, D) be the del Pezzo surface of degree 5 with an anticanonical cycle of 5 lines.

### From Example 2 to Example 3:



• Examples 2 and 3 are two ways to describe a cluster variety.

## Relating the constructions in an example

Let (Y, D) be the del Pezzo surface of degree 5 with an anticanonical cycle of 5 lines.

## From Example 2 to Example 3:





• Examples 2 and 3 are two ways to describe a cluster variety.

## Relating the constructions in an example

Let (Y, D) be the del Pezzo surface of degree 5 with an anticanonical cycle of 5 lines.

## From Example 2 to Example 3:



• Examples 2 and 3 are two ways to describe a cluster variety.

### Relating the constructions in an example

Let  $\left(Y,D\right)$  be the del Pezzo surface of degree 5 with an anticanonical cycle of 5 lines.

## From Example 2 to Example 3:

$$z^{e_1^i} = 0 \qquad \mu: T \dashrightarrow T' \qquad z^{-e_1^i} = 0$$

$$z^{e_2^i} = -1 \qquad z^m \left(1 + z^{e_2^i}\right)^{-(m,e_1)} \leftarrow z^m$$

• Examples 2 and 3 are two ways to describe a cluster variety.

## Relating the constructions in an example

Let  $\left(Y,D\right)$  be the del Pezzo surface of degree 5 with an anticanonical cycle of 5 lines.

### From Example 2 to Example 3:

$$\begin{aligned} z^{e_1^i} = 0 & \mu: T \dashrightarrow T' \xrightarrow{z^{e_1^i} = 0} \\ z^{e_2^i} = -1 & \mu: T \dashrightarrow T' \xrightarrow{z^{e_1^i} = 0} \\ z^{m} (1 + z^{e_2^i})^{-(m,e_1)} \leftrightarrow z^m \\ \text{ord}_{D_n} \mapsto \text{ord}_{D_n} \circ \mu^* \end{aligned}$$
$$\begin{aligned} \text{ord}_{D_n} \left( z^m \left( 1 + z^{e_2^i} \right)^{-(m,e_1)} \right) &= \langle m, n \rangle - \min \left\{ 0, \langle e_2^*, n \rangle \right\} \langle m, e_1 \rangle \\ & n \mapsto n - \min \left\{ 0, \langle e_2^*, n \rangle \right\} e_1 \end{aligned}$$

• Examples 2 and 3 are two ways to describe a cluster variety.

## Relating the constructions in an example

Let  $\left(Y,D\right)$  be the del Pezzo surface of degree 5 with an anticanonical cycle of 5 lines.

## From Example 2 to Example 3:

$$\begin{aligned} z^{\varepsilon_1^*} = 0 & \mu: T \dashrightarrow T' & z^{-\varepsilon_1^*} = 0 \\ z^{\varepsilon_2^*} = -1 & \mu: T \dashrightarrow T' & z^{-\varepsilon_1^*} = 0 \\ z^{\varepsilon_2^*} = -1 & z^m (1 + z^{\varepsilon_2^*})^{-(m,e_1)} \leftrightarrow z^m \\ & \text{ord}_{D_n} \mapsto \text{ord}_{D_n} \circ \mu^* \\ & \text{ord}_{D_n} \left( z^m \left( 1 + z^{\varepsilon_2^*} \right)^{-(m,e_1)} \right) = \langle m, n \rangle - \min \left\{ 0, \langle e_2^*, n \rangle \right\} \langle m, e_1 \rangle \\ & n \mapsto n - \min \left\{ 0, \langle e_2^*, n \rangle \right\} e_1 \end{aligned}$$

### Remark

Examples 2 and 3 are more general than usual definitions of cluster varieties.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

#### Remark

Examples 2 and 3 are more general than usual definitions of cluster varieties.

### Example 2

Let  $(\overline{Y}, \overline{D})$  be a toric variety, and let  $H \subset D$  be a codimension 2 locus in the boundary. Now take (Y, D) to be the blow-up of  $\overline{Y}$ along H together with the strict transform of  $\overline{D}$ . Then  $U := Y \setminus D$ is log Calabi-Yau (with volume form the pullback of the toric volume form), and (Y, D) is a partial minimal model for U.

#### Remark

Examples 2 and 3 are more general than usual definitions of cluster varieties.

### Example 2

Let  $(\overline{Y}, \overline{D})$  be a toric variety with  $\overline{D}$  a disjoint union of codimension 1 tori, and let  $H \subset D$  be a codimension 2 locus in the boundary. Now take (Y, D) to be the blow-up of  $\overline{Y}$  along H together with the strict transform of  $\overline{D}$ . Then  $U := Y \setminus D$  is log Calabi-Yau (with volume form the pullback of the toric volume form), and (Y, D) is a partial minimal model for U.

#### Remark

Examples 2 and 3 are more general than usual definitions of cluster varieties.

### Example 2

Let  $(\overline{Y}, \overline{D})$  be a toric variety with  $\overline{D}$  a disjoint union of codimension 1 tori, and let  $H \subset D$  be a union of subtori  $\{z^w = -1\} \subset T_{N/\mathbb{Z} \cdot n}$  for some  $w \in n^{\perp}$ , n the cocharacter defining a component of  $\overline{D}$ . Now take (Y, D) to be the blow-up of  $\overline{Y}$  along H together with the strict transform of  $\overline{D}$ . Then  $U := Y \setminus D$  is log Calabi-Yau (with volume form the pullback of the toric volume form), and (Y, D) is a partial minimal model for U.

#### Remark

Examples 2 and 3 are more general than usual definitions of cluster varieties.

### Definition

Let  $(\overline{Y}, \overline{D})$  be a toric variety with  $\overline{D}$  a disjoint union of codimension 1 tori, and let  $H \subset D$  be a union of subtori  $\{z^w = -1\} \subset T_{N/\mathbb{Z} \cdot n}$  for some  $w \in n^{\perp}$ , n the cocharacter defining a component of  $\overline{D}$ . Now take (Y, D) to be the blow-up of  $\overline{Y}$  along H together with the strict transform of  $\overline{D}$ . Then  $U := Y \setminus D$  is **cluster log Calabi-Yau** (with volume form the pullback of the toric volume form), and (Y, D) is a partial minimal model for U.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

## Cluster data

• Lattice  $N \cong \mathbb{Z}^n$ 

## Cluster data

- Lattice  $N \cong \mathbb{Z}^n$
- Skew-form  $\{\ \cdot\ ,\ \cdot\ \}:N\times N\to \mathbb{Z}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

## Cluster data

- Lattice  $N \cong \mathbb{Z}^n$
- Skew-form  $\{\ \cdot\ ,\ \cdot\ \}:N\times N\to \mathbb{Z}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

• Basis 
$$\mathbf{s} = (e_1, \ldots, e_n)$$

## Cluster data

- Lattice  $N \cong \mathbb{Z}^n$
- Skew-form  $\{\ \cdot\ ,\ \cdot\ \}:N\times N\to \mathbb{Z}$

• Basis 
$$\mathbf{s} = (e_1, \ldots, e_n)$$

## The $\mathcal{A}$ -variety as a cluster log CY

Set 
$$\Sigma_{\mathbf{s},\mathcal{A}} := \{\mathbb{R}_{\geq 0} \cdot e_i : 1 \leq i \leq n\} \cup \{0\}$$
, and let  $v_i := \{e_i, \cdot\} \in M$ . Blow-up each  $D_{e_i}$  along  $\{1 + z^{v_i} = 0\}$ .

### Cluster data

- Lattice  $N \cong \mathbb{Z}^n$
- Skew-form  $\{\ \cdot\ ,\ \cdot\ \}:N\times N\to \mathbb{Z}$

• Basis 
$$\mathbf{s} = (e_1, \ldots, e_n)$$

#### The A-variety as a cluster log CY

Set 
$$\Sigma_{\mathbf{s},\mathcal{A}} := \{\mathbb{R}_{\geq 0} \cdot e_i : 1 \leq i \leq n\} \cup \{0\}$$
, and let  $v_i := \{e_i, \cdot\} \in M$ . Blow-up each  $D_{e_i}$  along  $\{1 + z^{v_i} = 0\}$ .

#### The $\mathcal{X}$ -variety as cluster log CY

$$\begin{split} & \mathsf{Set}\ \Sigma_{\mathbf{s},\mathcal{X}} := \{-\mathbb{R}_{\geq 0} \cdot v_i : 1 \leq i \leq n\} \cup \{0\}. \ \text{Blow-up each } D_{-v_i} \\ & \mathsf{along}\ \{1+z^{e_i}=0\}. \end{split}$$

#### The $\mathcal{A}$ -variety as a union

Mutation  $\mu_k : T_{N;s} \dashrightarrow T_{N;s'}$  defined in terms of pullback of functions:  $\mu_k^*(z^m) = z^m (1 + z^{v_k})^{-\langle m, e_k \rangle}$ . Now set

$$\mathcal{A} := \bigcup_{\mathbf{s}} T_{N;\mathbf{s}} / \sim.$$

#### The A-variety as a union

Mutation  $\mu_k : T_{N;s} \dashrightarrow T_{N;s'}$  defined in terms of pullback of functions:  $\mu_k^*(z^m) = z^m (1 + z^{v_k})^{-\langle m, e_k \rangle}$ . Now set

$$\mathcal{A} := \bigcup_{\mathbf{s}} T_{N;\mathbf{s}} / \sim.$$

#### The $\mathcal{X}$ -variety as a union

Mutation  $\mu_k : T_{M;s} \dashrightarrow T_{M;s'}$  defined in terms of pullback of functions:  $\mu_k^*(z^n) = z^n (1 + z^{e_k})^{-\{n,e_k\}}$ . Now set

 $\mathcal{X} := \bigcup_{\mathbf{a}} T_{M;\mathbf{s}} / \sim.$ 

## Conjecture of Gross-Hacking-Keel [GHK15b]

## Let U be an affine log Calabi-Yau with maximal boundary

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

## Conjecture of Gross-Hacking-Keel [GHK15b]

Let U be an affine log Calabi-Yau with maximal boundary – this means it has a minimal model (Y, D) where D has a 0-stratum.

## Conjecture of Gross-Hacking-Keel [GHK15b]

Let U be an affine log Calabi-Yau with *maximal boundary*. Then the mirror  $U^{\vee}$  is again an affine log Calabi-Yau with maximal boundary. The integral tropical points of U parametrize a basis of  $\vartheta$ -functions on  $U^{\vee}$ , with multiplication given explicitly in terms of broken line counts.

## Conjecture of Gross-Hacking-Keel [GHK15b]

Let U be an affine log Calabi-Yau with *maximal boundary*. Then the mirror  $U^{\vee}$  is again an affine log Calabi-Yau with maximal boundary. The integral tropical points of U parametrize a basis of  $\vartheta$ -functions on  $U^{\vee}$ , with multiplication given explicitly in terms of broken line counts.

#### Remark

There are multiple precise log Calabi-Yau mirror symmetry conjectures in arXiv version 1 of [GHK15b].

## Conjecture of Gross-Hacking-Keel [GHK15b]

Let U be an affine log Calabi-Yau with *maximal boundary*. Then the mirror  $U^{\vee}$  is again an affine log Calabi-Yau with maximal boundary. The integral tropical points of U parametrize a basis of  $\vartheta$ -functions on  $U^{\vee}$ , with multiplication given explicitly in terms of broken line counts.

#### Cluster case

If U is a cluster variety, this is a corrected form of a conjecture of Fock-Goncharov.

## Conjecture of Gross-Hacking-Keel [GHK15b]

Let U be an affine log Calabi-Yau with *maximal boundary*. Then the mirror  $U^{\vee}$  is again an affine log Calabi-Yau with maximal boundary. The integral tropical points of U parametrize a basis of  $\vartheta$ -functions on  $U^{\vee}$ , with multiplication given explicitly in terms of broken line counts.

#### Cluster case

If U is a cluster variety, this is a corrected form of a conjecture of Fock-Goncharov. This is established for "Fock-Goncharov dual" cluster varieties satisfying certain affineness conditions in [GHKK18].

## Conjecture of Gross-Hacking-Keel [GHK15b]

Let U be an affine log Calabi-Yau with *maximal boundary*. Then the mirror  $U^{\vee}$  is again an affine log Calabi-Yau with maximal boundary. The integral tropical points of U parametrize a basis of  $\vartheta$ -functions on  $U^{\vee}$ , with multiplication given explicitly in terms of broken line counts.

#### Cluster case

If U is a cluster variety, this is a corrected form of a conjecture of Fock-Goncharov. This is established for "Fock-Goncharov dual" cluster varieties satisfying certain affineness conditions in [GHKK18]. Let's try to understand the conjecture.

#### Definition

Let  $(U, \Omega)$  be log CY. A divisorial discrete valuation (ddv)  $\nu : \mathbb{C}(U) \setminus 0 \to \mathbb{Z}$  is a discrete valuation of the form  $\nu = \operatorname{ord}_D(\cdot)$ where D is (a positive multiple of) an irreducible effective divisor in a variety birational to U.

#### Definition

Let  $(U, \Omega)$  be log CY. A divisorial discrete valuation (ddv)  $\nu : \mathbb{C}(U) \setminus 0 \to \mathbb{Z}$  is a discrete valuation of the form  $\nu = \operatorname{ord}_D(\cdot)$ where D is (a positive multiple of) an irreducible effective divisor in a variety birational to U. The **integral tropicalization of** U is  $U^{\operatorname{trop}}(\mathbb{Z}) := \{\nu \operatorname{ddv} : \nu(\Omega) < 0\} \cup \{0\}.$ 

#### Definition

Let  $(U, \Omega)$  be log CY. A divisorial discrete valuation (ddv)  $\nu : \mathbb{C}(U) \setminus 0 \to \mathbb{Z}$  is a discrete valuation of the form  $\nu = \operatorname{ord}_D(\cdot)$ where D is (a positive multiple of) an irreducible effective divisor in a variety birational to U. The **integral tropicalization of** U is  $U^{\operatorname{trop}}(\mathbb{Z}) := \{\nu \operatorname{ddv} : \nu(\Omega) < 0\} \cup \{0\}.$ 

(日)

#### Example 4

If 
$$U = T_N$$
,  $U^{\operatorname{trop}}(\mathbb{Z}) = N$ .

#### Definition

Let  $(U, \Omega)$  be log CY. A divisorial discrete valuation (ddv)  $\nu : \mathbb{C}(U) \setminus 0 \to \mathbb{Z}$  is a discrete valuation of the form  $\nu = \operatorname{ord}_D(\cdot)$ where D is (a positive multiple of) an irreducible effective divisor in a variety birational to U. The **integral tropicalization of** U is  $U^{\operatorname{trop}}(\mathbb{Z}) := \{\nu \operatorname{ddv} : \nu(\Omega) < 0\} \cup \{0\}.$ 

#### Example 4

If  $U = T_N$ ,  $U^{\text{trop}}(\mathbb{Z}) = N$ . Recall that toric divisors are indexed by cocharacters.

## Remark

We can extend scalars from Z<sub>>0</sub> to R<sub>>0</sub> in the definition of U<sup>trop</sup>(Z) to obtain U<sup>trop</sup>(ℝ) – the real tropicalization of U.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

#### Remark

We can extend scalars from Z<sub>>0</sub> to R<sub>>0</sub> in the definition of U<sup>trop</sup>(Z) to obtain U<sup>trop</sup>(R) – the real tropicalization of U.

•  $U^{\mathrm{trop}}(\mathbb{R})$  has a natural piecewise linear structure.

#### Remark

We can extend scalars from Z<sub>>0</sub> to R<sub>>0</sub> in the definition of U<sup>trop</sup>(Z) to obtain U<sup>trop</sup>(R) – the real tropicalization of U.

- $U^{\mathrm{trop}}(\mathbb{R})$  has a natural piecewise linear structure.
- When  $U = T_N$ ,  $U^{\operatorname{trop}}(\mathbb{R}) = N_{\mathbb{R}}$  is actually linear.

## Rough definition

A scattering diagram is a collection of walls in  $U^{\mathrm{trop}}(\mathbb{R})$ .

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

## Rough definition

A scattering diagram is a collection of *walls* in  $U^{\text{trop}}(\mathbb{R})$ . *Wall:* Codim 1 rational convex cone, decorated with a *scattering function* that determines a mutation map.

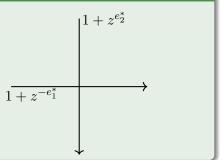
## Rough definition

A scattering diagram is a collection of *walls* in  $U^{\text{trop}}(\mathbb{R})$ . *Wall:* Codim 1 rational convex cone, decorated with a *scattering function* that determines a mutation map.

## Example 5



- $\mathbf{s} = (e_1, e_2)$
- $\{e_1, e_2\} = 1$



#### Wall-crossing

The scattering function f is of the form  $1+\sum_k c_k z^{k\{n,\,\cdot\,\,\}}$  and defines a wall-crossing map  $\mathfrak{p}_f:z^m\mapsto z^mf^{\pm\langle m,n\rangle}$ , with sign determined by crossing direction.

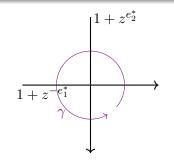
▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

#### Wall-crossing

The scattering function f is of the form  $1 + \sum_k c_k z^{k\{n, \cdot\}}$  and defines a wall-crossing map  $\mathfrak{p}_f : z^m \mapsto z^m f^{\pm \langle m, n \rangle}$ , with sign determined by crossing direction. The scattering diagram  $\mathfrak{D}$  is **consistent** if the composition of wall-crossing maps along any path  $\gamma$  depends only on the endpoints of  $\gamma$ .

#### Wall-crossing

The scattering function f is of the form  $1 + \sum_k c_k z^{k\{n, \cdot\}}$  and defines a wall-crossing map  $\mathfrak{p}_f : z^m \mapsto z^m f^{\pm \langle m, n \rangle}$ , with sign determined by crossing direction. The scattering diagram  $\mathfrak{D}$  is **consistent** if the composition of wall-crossing maps along any path  $\gamma$  depends only on the endpoints of  $\gamma$ .



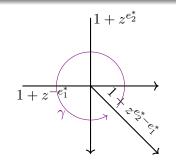
 $z^{e_1^*} \mapsto z^{e_1^*} \left( 1 + z^{e_2^* - e_1^*} \right)$ 

Not consistent

- ロト・日本・日本・日本・日本・日本

#### Wall-crossing

The scattering function f is of the form  $1 + \sum_k c_k z^{k\{n, \cdot\}}$  and defines a wall-crossing map  $\mathfrak{p}_f : z^m \mapsto z^m f^{\pm \langle m, n \rangle}$ , with sign determined by crossing direction. The scattering diagram  $\mathfrak{D}$  is **consistent** if the composition of wall-crossing maps along any path  $\gamma$  depends only on the endpoints of  $\gamma$ .



 $z^m \mapsto z^m$ 

#### Consistent

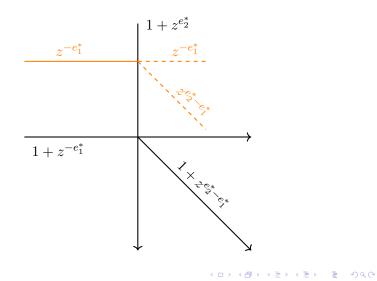
### Theorem (Gross-Hacking-Keel-Kontsevich)

There is a unique (up to equivalence) scattering diagram associated to every cluster variety.

## Definition

A broken line is a piecewise linear map  $\gamma:(-\infty,0]:U^{\mathrm{trop}}(\mathbb{R})$  bending only at walls and having finitely many domains of linearity, which is decorated with a Laurent monomial  $cz^{-\gamma'(t)}$  along each linear segment. The coefficient for unbounded segment is 1, and all other decorations are monomial summands arising from wall-crossing.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

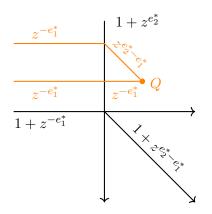


## From broken lines to $\vartheta$ -functions

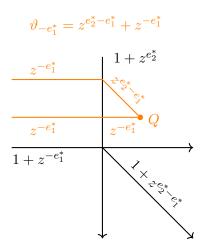
• Get " $\vartheta$ -function" on  $U^{\vee}$  for each  $p \in U^{\operatorname{trop}}(\mathbb{Z})$ - think N is a basis for  $\mathcal{O}(T_M = T_N^{\vee})$ .

#### From broken lines to $\vartheta$ -functions

- Get " $\vartheta$ -function" on  $U^{\vee}$  for each  $p \in U^{\operatorname{trop}}(\mathbb{Z})$  think N is a basis for  $\mathcal{O}(T_M = T_N^{\vee})$ .
- Local coordinates for  $\vartheta_p$ : pick  $Q \in U^{\text{trop}}(\mathbb{R})$ . Write  $\vartheta_p$  as sum of decorating monomials of broken lines starting from direction p and ending at Q.



(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

# $\vartheta$ -function multiplication

## Structure constants $\alpha_{pq}^{r}$

$$\vartheta_p \cdot \vartheta_q = \sum_{r \in U^{\mathrm{trop}}(\mathbb{Z})} \alpha_{pq}^r \vartheta_r$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

# $\vartheta$ -function multiplication

## Structure constants $\alpha_{pq}^r$

$$\vartheta_p \cdot \vartheta_q = \sum_{r \in U^{\mathrm{trop}}(\mathbb{Z})} \alpha_{pq}^r \vartheta_r$$

## Theorem (Gross-Hacking-Keel-Kontsevich)

$$\alpha_{pq}^{r} = \sum_{\substack{(\gamma_{1}, \gamma_{2}) \\ I(\gamma_{1}) = p, \ I(\gamma_{2}) = q \\ \gamma_{1}(0) = \gamma_{2}(0) = r \\ F(\gamma_{1}) + F(\gamma_{2}) = r}} c(\gamma_{1}) \ c(\gamma_{2})$$

## $\vartheta$ -function multiplication

# Example × 2<sup>(2,1)</sup> 2<sup>(2,1)</sup> (1, 2)(1,1) $\vartheta_{(-1,0)} \cdot \vartheta_{(2,1)} = \vartheta_{(1,1)} + \vartheta_{(1,2)}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

## Conjecture (Gross-Hacking-Keel)

Let U be an affine log Calabi-Yau with maximal boundary. Then

• we have an algebra A with basis  $U^{\text{trop}}(\mathbb{Z})$ , where multiplication is given by broken line counts, and

## Conjecture (Gross-Hacking-Keel)

Let U be an affine log Calabi-Yau with maximal boundary. Then

• we have an algebra A with basis  $U^{\text{trop}}(\mathbb{Z})$ , where multiplication is given by broken line counts, and

2 Spec
$$(A) = U^{\vee}$$
.

What's known?

• If U is a cluster variety, A is constructed in [GHKK18].

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

## What's known?

• If U is a cluster variety, A is constructed in [GHKK18]. It is a basis for regular functions on the "Fock-Goncharov dual" cluster variety, which is expected to be the mirror.

## What's known?

- If U is a cluster variety, A is constructed in [GHKK18]. It is a basis for regular functions on the "Fock-Goncharov dual" cluster variety, which is expected to be the mirror.
- If U contains an open torus, A is constructed [KY19], and they prove "the Frobenius structure conjecture" in this setting.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQの

## What's known?

- If U is a cluster variety, A is constructed in [GHKK18]. It is a basis for regular functions on the "Fock-Goncharov dual" cluster variety, which is expected to be the mirror.
- If U contains an open torus, A is constructed [KY19], and they prove "the Frobenius structure conjecture" in this setting.
- Similar results are proved for the blowup of a toric variety along hypersurfaces in the toric boundary, combining [GS19] and [AG20].

## References

[AG20] H. Argüs and M. Gross, *The higher dimensional tropical vertex*, (2020), arXiv:2007.08347 [math.AG].

- [GHK15a] M. Gross, P. Hacking and S. Keel, Birational geometry of cluster algebras, Algebr. Geom. 2(2), 137–175 (2015).
- [GHK15b] M. Gross, P. Hacking and S. Keel, Mirror symmetry for log Calabi-Yau surfaces I, Publ. Math. Inst. Hautes Études Sci. 122, 65–168 (2015).
- [GHKK18] M. Gross, P. Hacking, S. Keel and M. Kontsevich, Canonical bases for cluster algebras, J. Amer. Math. Soc. 31(2), 497–608 (2018).
  - [GS19] M. Gross and B. Siebert, *Intrinsic Mirror Symmetry*, (2019), arXiv:1909.07649 [math.AG].
  - [KY19] S. Keel and T. Y. Yu, The Frobenius structure theorem for affine log Calabi-Yau varieties containing a torus, (2019), arXiv:1908.09861 [math:AG].