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1 Introduction

In this paper we study broken line convex geometry– a generalization of convex geometry in which the
ambient space is the tropicalization of a cluster variety rather than simply a vector space, and in which
broken line segments play the role ordinarily filled by line segments. We show that many classical convex
geometry results remain true in this setting. For instance, versions of the following classical results remain
true in broken line convex geometry:

1. A set S is convex if and only if tS + (1− t)S = S for all t ∈ [0, 1].

2. conv(S + T ) = conv(S) + conv(T ).

3. If φ is a convex function, then the locus where φ is at least some constant r is a convex set.

4. A bounded polyhedron is the convex hull of its vertices.

5. The dual of a convex set S is full dimensional if and only if S is strongly convex.

6. If P and P ◦ are dual polytopes, there is a bijective, containment-reversing correspondence between
the faces of P and P ◦.
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Other aspects of the theory need a bit of modification, but remain quite pleasant. In broken line convex
geometry, the faces of a polyhedral set are generally not broken line convex. However, they satisfy a rather
natural weaker convexity notion– which we call weak convexity. They may also fail to form a complex.
Nevertheless, they do have a structure reminiscent of a polyhedral complex, forming what we call a pseudo-
complex.

As is already evident in the brief list above, one operation central to the theory of convex geometry is the
Minkowski sum. As such, a key element of this story is our notion of Minkowski addition in a tropical space.
It is morally the same as usual Minkowski addition, but the lack of linear structure in tropical spaces makes
this addition multi-valued. See Definition 15 for the precise definition. §3 treats the interplay of this tropical
Minkowski sum and the broken line convex hull of [CMN21]. We find that these concepts relate to each other
in much the same way as the usual Minkowski sum and convex hull do. In particular, Proposition 21 is the
broken line convex geometry version of Item 1 and Theorem 32 is the broken line convex geometry version
of Item 2.

Next, we turn our attention to the meaning of convexity of functions in broken line convex geometry.
Here again we adapt the linear definition to the tropical setting by replacing the line segment between a pair
of points with all broken line segments between a pair of points:

Definition 1 (Definition 34). Let S ⊂ U trop(Q) be a broken line convex set. A function φ : S → Q is convex
with respect to broken lines if for any broken line segment γ : [t1, t2] → S, we have that

φ(γ(t)) ≥
(
t2 − t

t2 − t1

)
φ(γ(t1)) +

(
t− t1
t2 − t1

)
φ(γ(t2))

for all t ∈ [t1, t2].

We then give an equivalent characterization these functions in terms of structure constants of ϑ-function
multiplication:1

Theorem 2 (Proposition 35, Remark 36). Let S ⊂ U trop(Q) be broken line convex. Then φ : S → Q is
convex with respect to broken lines if and only if for all s1, . . . , sd, s ∈ S, a1, . . . , ad ∈ Q≥0 with a1s1, . . . , adsd,

and (a1 + · · ·+ ad)s all integral, and α
(a1+···+ad)s
a1s1,...,adsd ̸= 0, we have

φ(s) ≥
d∑

i=1

ai
a1 + · · ·+ ad

φ(si).

We use these equivalent characterizations to prove the equivalence of Gross-Hacking-Keel-Kontsevich’s
min-convex and decreasing definitions. See Corollary 39. We then describe other properties of functions
which are convex with respect to broken lines. In particular, Proposition 41 is the broken line convex
geometry version of Item 3.

After this discussion of convexity for functions, we treat polyhedral broken line convex geometry. The
canonical pairing between tropicalizations of mirror cluster varieties affords us a natural notion of a half-space
in this context.

Definition 3 (Definition 46). For y ∈ (U∨)trop(Q) and r ∈ Q, we call the set

K(y, r) :=
{
x ∈ U trop(Q) : ⟨x, y⟩ ≥ −r

}
a tropical half-space.

This in turn provides a natural analogue of a polyhedron– we say a subset S ⊂ U trop(Q) is polyhedral if it
is the intersection of finitely many tropical half-spaces. (See Definition 49.) Faces of S are defined much like
in usual convex geometry– we take a tropical half-space containing S and intersect its boundary with S. See
Definition 50. As mentioned above, these faces satisfy only a weaker notion of convexity. If we choose a pair
of points x1, x2 in a face F , we cannot say that F contains all broken line segments connecting x1 and x2.

1We will discuss these ϑ-functions and structure constants in greater detail in §2. For now, a non-zero structure constant
αq
p1,...,pd means that q is a value of the multi-valued sum p1 +ϑ . . .+ϑ pd.
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We can only say that F contains some broken line segment connecting x1 and x2. (See Corollary 55.) The
failure of these faces to be broken line convex hinders another familiar property from usual convex geometry–
the intersection of two faces need not be a face. As such, faces may not form a complex. They do however
have a structure very reminiscent of a complex, which we refer to as a pseudo-complex. See Definition 56
and Proposition 57. Moreover, we show in Proposition 88 that the face pseudo-complexes of polar polytopal
sets are related in precisely the same way as the linear case described in Item 6.

Finally, §6 treats a major motivation we had in writing this paper, and provides in our view particularly
compelling evidence that the theory we develop here is worth studying. We state and prove a broken
line convex geometry version of the duality for nef-partitions due to Borisov. See [Bor93] for the original
version and ®Tim: [Coming soon...] for our new version. In the linear case, Borisov conjectured ([Bor93,
Conjecture 3.6]):

The duality between nef-partitions of reflexive polyhedra ∆ and ∇ gives rise to pairs
of mirror symmetric families of Calabi-Yau complete intersections in Gorenstein toric

Fano varieties P∆◦ and P∇◦ .

His convex geometry duality and associated mirror symmetry conjecture had a profound impact on the study
of mirror symmetry. Our hope is that, once we have established a

{polyhedral broken line convex geometry} ↔ {algebraic geometry of minimal models for cluster varieties}

dictionary, we will be able to make an analogous statement for Calabi-Yau complete intersections in Goren-
stein Fano minimal models for cluster varieties.

In fact, we view this paper as part of a research program we undertook with our close collaborators
L. Bossinger, M.-W. Cheung, and A. Nájera Chávez, with the goal of generalizing Batyrev and Batyrev-
Borisov mirror symmetry constructions from the setting of Gorenstein Fano toric varieties to the setting of
Gorenstein Fano minimal models for cluster varieties. It is our hope that the broken line convex geometry
results of this paper will be an important step toward that common ultimate goal.

2 Background

The notion of broken line convexity used in this paper comes from [CMN21], where the main result is the
equivalence of this convexity notion with the algebraic notion of positivity from [GHKK18]. That said, we
will employ subtly different conventions and definitions here. First, as we are only ever interested in the
rational points of our tropical spaces, we will always work over Q instead of R.2 Next (and relatedly), the
definition of positivity in [GHKK18], and in turn that of broken line convexity in [CMN21], makes reference
to closed sets. However, these definitions may equally well be made without requiring closure. Moreover,
the proof of the equivalence of broken line convexity and positivity in [CMN21] does not rely on closure –
the result still holds if closure is dropped from both definitions. We do precisely this.

Definition 4 ([CMN21]). A subset S of U trop(Q) is broken line convex if for every pair of points s1, s2 in
S, every broken line segment with endpoints s1 and s2 has support entirely contained in S.

This is the natural generalization of usual convexity to U trop(Q), where broken line segments fill the role
occupied by line segments in usual convex geometry. The aforementioned positivity which it is equivalent to
is defined as follows:

Definition 5 ([GHKK18]). A subset S of U trop(Q) is positive if for any non-negative integers a and b, and
any integral tropical points p ∈ aS(Z), q ∈ b S(Z), and r ∈ U trop(Z) with αr

p,q ̸= 0, we have r ∈ (a+ b)S(Z).

In usual convex geometry, there is a canonical way to take a possibly non-convex set and replace it with
a convex set which contains it – namely the convex hull. There is a completely analogous procedure here:

2The prescient reader may raise concern about placement of basepoints for broken lines in regions of dense walls. We will
address this concern in §2.2 with a discussion of broken lines vs. generic broken lines, as in [CMN21], with one modification.
The sequence of generic broken lines we use to define our broken lines here will live in the finite order scattering diagrams whose
colimit produces the cluster scattering diagram.
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Definition 6 ([CMN21]). Let S ⊂ U trop(Q). We define the broken line convex hull of S, denoted convBL(S)
to be the intersection of all broken line convex sets containing S.

Notation 7. As we will always work over Q, when we write an interval [t1, t2] we mean an interval in Q not
R.

2.1 Results from [CMMM]

There are two key results from the forthcoming paper [CMMM] that we will need throughout the course of
this work. We will state them here in simplified form – the setting of [CMMM] is more general than that
the current work. The reader who is – quite reasonably – hesitant to accept results whose proofs are not yet
publicly available may for the time being take these two results to be conjectures upon which many aspects
of the current work rely.

Let U and U∨ be mirror cluster varieties for which the full Fock-Goncharov conjecture holds. Then:

Theorem 8 ([CMMM],“Theta Recipocity”). Let x ∈ U trop(Z) and y ∈ (U∨)trop(Z). Then x(ϑy) = y(ϑx).

This means we have a truly canonical pairing between U trop(Z) and (U∨)trop(Z), rather than two different
evaluation pairings. This pairing ⟨ · , · ⟩ extends uniquely to a pairing between U trop(Q) and (U∨)trop(Q).

The other key result of [CMMM] we need is the valuative independence theorem.

Theorem 9 ([CMMM],“Valuative Independence”). Let

f =
∑

y∈(U∨)trop(Z)

cyϑy

be any regular function on U and x ∈ U trop(Z) any integral tropical point. Then

x(f) = min
cy ̸=0

{x(ϑy)} .

Recall that integral tropical points are discrete valuations, and as such the inequality

x(f) ≥ min
cy ̸=0

{x(ϑy)}

holds by definition. The valuative independence theorem replaces the inequality with an equality, essentially
by eliminating the possibility of pole cancellations.

2.2 Scattering diagrams and broken lines

We refer the reader to [GHKK18] for background on cluster scattering diagrams. We simply recall a few
basic points, in part to fix terminology and notation, and follow up with some simple observations.

1. A scattering diagram D is a collection of walls (d, fd), where the support d is a rational polyhedral
cone in the ambient vector space, and fd is the scattering function, which lives in a certain completed

monoid ring k̂[P ]. (See [GHKK18, Definition 1.4].)

2. Crossing a wall (d, fd) induces an automorphism pfd of k̂[P ], and a generic path γ crossing multiple walls

induces an automorphism pγ of k̂[P ] by composition. (See [GHKK18, Definition 1.2 and discussion of
path ordered product].)

3. For pγ of Item 2 to be defined, γ must avoid the singular locus of D:

Sing(D) :=
⋃

(d,fd)∈D

∂d ∪
⋃

(d1,fd1
),(d2,fd2

)∈D

codim(d1∩d2)≥2

d1 ∩ d2.

4. Cluster scattering diagrams are constructed order by order as a colimit D = colimk Dk, and each Dk

is a finite scattering diagram. (See [GHKK18, Appendix C].)
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5. While the construction mentioned in Item 4 depends upon a choice of initial seed s, if s and s′ are
related by mutation µ : TL∗;s 99K TL∗;s′ , then µ

trop(Ds) is equivalent to Ds′ . (See [GHKK18, §1.3].)

Since the support d of each wall is a rational polyhedral cone (Item 1), we can describe the scattering
diagram perfectly well over Q rather than R. Next, thanks to mutation invariance of the scattering diagram
(Item 5), we interpret (U∨)trop(Q) as the natural ambient space of the scattering diagram for U . To write
down a scattering diagram explicitly however, we choose a seed of the cluster structure. This selects a cluster
torus TL in U and TL∗ in U∨, and piecewise linearly identifies the integral tropical points of U and U∨ with
the integral tropical points of TL and TL∗ respectively, i.e. with the cocharacter lattices L and L∗ of these
tori. In turn, it identifies U trop(Q) and (U∨)trop(Q) with a pair of dual Q-vector spaces V := L ⊗ Q and
V ∗ := L∗ ⊗Q.

Notation 10. For each seed s, write rs : U
trop(Q) → V and r∨s : (U∨)trop(Q) → V ∗ for the piecewise linear

identifications described above.

We will also use the piecewise linear identifications rs and r∨s to define topologies on U trop(Q) and
(U∨)trop(Q). We equip both V and V ∗ with the Euclidean topology and say a set S in U trop(Q) (respectively,
in (U∨)trop(Q)) is open if and only if rs(S) (respectively, r

∨
s (S)) is open.

We are now prepared to discuss broken lines. Our discussion will have a few minor differences from most
of the literature. First, as in [CMN21], we will need to allow broken lines to have endpoints on walls and
intersect the singular locus. Our treatment will differ only slightly from that in [CMN21]. We still use a
notion of generic broken lines and define broken lines as a limit of these. However, as we are working over Q,
there may be regions in which all possible endpoints are contained in walls. This prevents the construction
of a sequence of generic broken lines whose limit is a broken line having a prescribed endpoint in this region.
We deal with this issue by instead defining k-genericity with respect to the finite scattering diagram Dk

in Definition 11, and requiring γk to be a k-generic broken line in Definition 12. Next, in order to have a
broken line convex geometry version of strongly convex, we will need a notion of a broken line which extends
infinitely in both directions. That is, broken lines are really analogous to rays rather than lines, and we need
an analogue of lines. For this, we introduce doubly infinite broken lines in Definition 14.

Definition 11. Let D = colimk Dk be a scattering diagram in V ∗, let m ∈ L∗ \ {0}, and let x0 ∈ V ∗ \
supp(Dk). A k-generic broken line γ with initial exponent m =: I(γ) and endpoint x0 is a piecewise linear
continuous proper path γ : Q≤0 → V ∗ \ Sing(Dk) bending only at walls of Dk, with a finite number of
domains of linearity ℓ and a monomial cℓz

mℓ ∈ k[L∗] for each of these domains. The path γ and the
monomials cℓz

mℓ are required to satisfy the following conditions:

• γ(0) = x0.

• If ℓ is the unique unbounded domain of linearity of γ, then cℓz
mℓ = zm.

• For t in a domain of linearity ℓ, γ̇(t) = −mℓ.

• Suppose γ bends at a time t, passing from the domain of linearity ℓ to ℓ′, and setDt = { (d, fd) ∈ D| γ(t) ∈ d}.
Then cℓ′z

mℓ′ is a term in pγ|(t−ϵ,t+ϵ),Dt
(cℓz

mℓ).

Definition 12. Let m ∈ L∗ \ {0} and x0 ∈ V ∗. A broken line with initial exponent vector m and endpoint
x0 is a piecewise linear continuous proper path γ : Q≤0 → V ∗, together with a sequence (γk)k∈Z>0

satisfying:

• γk is a k-generic broken line;

• (supp(γk))k∈Z>0
converges to Im(γ);

• I(γk) = m for all k ∈ Z>0; and

• for some sufficiently large K, all γk with k > K bend at the same collection of walls in the same order
and have the same decorating monomials.

We call Im(γ) the support of the broken line and denote it by supp(γ).

We can modify Definitions 11 and 12 slightly to obtain our analogue of lines.
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Definition 13. Let D = colimk Dk be a scattering diagram in V ∗ and let m1,m2 ∈ L∗ \ {0}. A k-generic
doubly infinite broken line with initial exponent m1 and final exponent m2 is a piecewise linear continuous
proper path γ : Q → V ∗\Sing(Dk) bending only at walls of Dk, with a finite number of domains of linearity ℓ
and a monomial cℓz

mℓ ∈ k[L∗] for each of these domains. The path γ and the monomials cℓz
mℓ are required

to satisfy the following conditions:

• lim
t→−∞

γ̇(t) = −m1 and lim
t→∞

γ̇(t) = −m2.

• If ℓ is the unbounded domain of linearity of γ associated to times t≪ 0, then cℓz
mℓ = zm1 .

• For t in a domain of linearity ℓ, γ̇(t) = −mℓ.

• Suppose γ bends at a time t, passing from the domain of linearity ℓ to ℓ′, and setDt = { (d, fd) ∈ D| γ(t) ∈ d}.
Then cℓ′z

mℓ′ is a term in pγ|(t−ϵ,t+ϵ),Dt
(cℓz

mℓ).

Definition 14. Let D = colimk Dk be a scattering diagram in V ∗ and let m1,m2 ∈ L∗ \ {0}. A doubly
infinite broken line with initial exponent m1 and final exponent m2 is a piecewise linear continuous proper
path γ : Q → V ∗, together with a sequence (γk)k∈Z>0

satisfying:

• γk is a k-generic doubly infinite broken line;

• (supp(γk))k∈Z>0
converges to Im(γ);

• I(γk) = m1 for all k ∈ Z>0; and

• for some sufficiently large K, all γk with k > K bend at the same collection of walls in the same order
and have the same decorating monomials and, in particular, have final exponent m2.

We call Im(γ) the support of the doubly infinite broken line and denote it by supp(γ).

3 Tropical Minkowski sum

In order to generalize many convex polyhedral geometry constructions of the toric world to the setting of
cluster varieties, we will need a convex tropical geometry version of the Minkowski sum. In this section we
provide such a notion and illustrate some of its key properties, particularly Theorem 32 which illustrates
the compatibility of this tropical Minkowski sum with the broken line convex hull. In essence, the tropical
Minkowski sum of two subsets S and T of a tropical space U trop(Q) works the same way as the usual
Minkowski sum of subsets of a Euclidean space– we “add” pairs of elements (s, t) with s ∈ S, t ∈ T .
However, in this setting where we have only a piecewise linear structure, our “addition” is multivalued. The
values that arise correspond to non-zero summands of products of ϑ-functions. Namely, if for some a ∈ Z>0,
the function ϑa x is a non-zero summand of ϑa sϑa t, then x is a value of the “sum” of s and t.

Definition 15. Let S and T be subsets of U trop(Q). We define the tropical Minkowski sum of S and T as
follows:

S +ϑ T :=
{
x ∈ U trop(Q) : ∃s ∈ S, t ∈ T, a ∈ Z>0 with as, at, ax ∈ U trop(Z) such that αax

as,at ̸= 0
}

=
{
x ∈ U trop(Q) : ∃s ∈ S, t ∈ T, γ : [0, τ ] → U trop(Q) with γ(0) = s, γ(τ) = t, γ(τ/2) = x/2

}
where γ is a broken line segment.

The equivalence of the two descriptions in Definition 15 follows immediately from the proof of [CMN21,
Theorem 6.1]. See Figure 1 for a simple example of the tropical Minkowski sum, highlighting the multivalued
nature of the sum.
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1
+
z e ∗

2 −
e ∗
1

1 + ze
∗
2

1 + z−e∗1

S T
...

1
+
z e ∗

2 −
e ∗
1

1 + ze
∗
2

1 + z−e∗1

S T

S+ϑ T

Figure 1: The tropical Minkowski sum of two points in (A∨)trop(Q) for the A cluster
variety of type A2. As is standard, to draw this picture we identify (A∨)trop(Q) with Q2 via
a choice of seed. The relevant broken lines appear on the left and the corresponding tropical
Minkowski sum on the right.

Remark 16. Consider a function f ∈ O(U∨) given as linear combination of products of theta functions
f =

∑
s,t∈Utrop(Z) cs,tϑs · ϑt. Since f ∈ O(U∨), we may also expand it as f =

∑
x∈Utrop(Z) fxϑx. Let ϑx0

be one such non-zero summand of f . Then, there exist s0, t0 ∈ U trop(Z) with cs0,t0 ̸= 0 such that ϑx0
is a

non-zero summand of ϑs0 · ϑt0 . To see this, note that we have

f =
∑

s,t∈Utrop(Z)

cs,tϑs · ϑt

=
∑

s,t∈Utrop(Z)

∑
x∈Utrop(Z)

cs,tα
x
s,tϑx

=
∑

x∈Utrop(Z)

fxϑx.

By linear independence of theta functions, we must have that fx =
∑

s,t∈Utrop(Z) cs,tα
x
s,t for each x ∈ U trop(Z).

So fx0
may only be non-zero if we have some s0, t0 with cs0,t0 and αx0

s0,t0 both non-zero. Note that this
argument also applies if we replace the products of pairs of theta functions with products of arbitrary finite
numbers of theta functions.

Remark 17. The non-negativity of scattering functions for cluster scattering diagrams implies that all struc-
ture constants αr

p,q (or more generally αr
p1,...,pd

) are non-negative. This result is sometimes referred to as
strong positivity. Versions of this result are due to [GHKK18, Theorem 7.5], [Man21, Proposition 2.15], and
[DM21, Theorem 1.1].

Lemma 18. Let p, q, r ∈ U trop(Z) be such that αr
p,q ̸= 0, and let a ∈ Z>0. Then αar

ap,aq ̸= 0.

Proof. If (γ1, γ2) is a pair of broken lines contributing to αr
p,q, we may rescale the exponent vectors of

decoration monomials as well as the supports of γ1 and γ2 by a factor of a to obtain a new pair broken
lines (of higher multiplicity) (γ̃1, γ̃2) contributing to αar

ap,aq. Then positivity of scattering functions implies
no cancellations may occur and αar

ap,aq ̸= 0.

Lemma 19. Let x ∈ U trop(Q), and let a1, . . . , ad be non-negative integers such that each aix is integral.

Then α
(a1+···+ad)x
a1x,...,adx ̸= 0.

Proof. Choose a seed s to identify U trop(Q) with a Q-vector space V by a map rs as in Notation 10. Take
(γ1, · · · , γd) to be the collection of straight broken lines in V where the initial decoration monomial of γi is

zairs(x) and the endpoint of each γi is (a1 + · · ·+ ad)rs(x). This contributes 1 to α
(a1+···+ad)x
a1x,...,adx . (It is in fact

the only contribution.)
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Lemma 20. Let S, T and R be subsets of U trop(Q). Then

(S +ϑ T ) +ϑ R = S +ϑ (T +ϑ R).

Proof. Let x ∈ (S +ϑ T ) +ϑ R. Then there exists y ∈ S +ϑ T , r ∈ R and a ∈ Z>0 with αax
ay,ar ̸= 0, meaning

ϑax is a non-zero summand of ϑay ·ϑar. Similarly, since y ∈ S+ϑ T we have αby
bs,bt ̸= 0 for some s ∈ S, t ∈ T

and b ∈ Z>0, meaning ϑby is a non-zero summand of ϑbs · ϑbt. Then, since

ϑabx is a non-zero summand of ϑaby · ϑabr

and

ϑaby is a non-zero summand of ϑabs · ϑabt,

we obtain that

ϑabx is a non-zero summand of ϑabs · ϑabt · ϑabr.

Consider the expression ϑabt · ϑabr =
∑

abz∈Utrop(Z) α
abz
abt,abrϑabz. By construction, if αabz

abt,abr ̸= 0, then
z ∈ T +ϑ R. We have now that

ϑabx is a non-zero summand of
∑

abz∈Utrop(Z)

αabz
abt,abrϑabs · ϑabz.

Then by Remark 16, we find that ϑabx is a non-zero summand of ϑabs·ϑabz for some z ∈ T+ϑR. Consequently,
x ∈ S +ϑ (T +ϑ R).

Proposition 21. A subset S of U trop(Q) is broken line convex if and only if for all t ∈ [0, 1], we have

tS +ϑ (1− t)S = S.

Proof. Let S be broken line convex. Then for all a, b in Z≥0, p ∈ aS(Z), q ∈ bS(Z) and r ∈ U trop(Z) with
αr
p,q ̸= 0, we have that r ∈ (a + b)S. If z ∈ tS +ϑ (1 − t)S, then there is some x ∈ tS, y ∈ (1 − t)S, and
c ∈ Z>0 such that c x, c y, and c z are in U trop(Z) and αc z

c x,c y ̸= 0. We can find non-negative integers a and b
such that t = a

a+b and c = a+ b. Then p := c x ∈ aS(Z), q := c y ∈ bS(Z), and r := c z must be in (a+ b)S.
It follows that z ∈ S, and tS +ϑ (1− t)S ⊂ S.

On the other hand for all z ∈ U trop(Q), we can draw a straight line segment from tz to (1− t)z. As such,
z ∈ t {z}+ϑ (1− t) {z}. So if z ∈ S, then z ∈ t {z}+ϑ (1− t) {z} ⊂ tS +ϑ (1− t)S, and S ⊂ tS +ϑ (1− t)S.

Now suppose tS +ϑ (1− t)S = S for all t ∈ [0, 1]. We want to show that for all a, b in Z≥0, p ∈ aS(Z),
q ∈ bS(Z) and r ∈ U trop(Z) with αr

p,q ̸= 0, we have r ∈ (a + b)S. First we address the trivial case: if
a = b = 0 and αr

p,q ̸= 0, then necessarily p = q = r = 0 ∈ 0 ·S. Next, assume a > 0 or b > 0, and let t = a
a+b .

Write p′ := p
a+b , q

′ := q
a+b , and r

′ := r
a+b , so p

′ ∈ tS, q′ ∈ (1 − t)S, and α
(a+b)r′

(a+b)p′,(a+b)q′ ̸= 0. This implies

r′ ∈ tS +ϑ (1− t)S = S, so r ∈ (a+ b)S as desired.

Proposition 22. If the subsets S and T of U trop(Q) are broken line convex, then S +ϑ T is broken line
convex.

Proof. Let τ ∈ [0, 1]. If we prove the equality

τ(S +ϑ T ) +ϑ (1− τ)(S +ϑ T ) = S +ϑ T,

then by Proposition 21 we conclude the result.
Assume that x ∈ τ(S+ϑ T )+ϑ (1− τ)(S+ϑ T ). So, there exist y ∈ τ · (S+ϑ T ), z ∈ (1− τ) · (S+ϑ T ) and

a ∈ Z>0 such that αa x
a y,a z ̸= 0, meaning ϑax is a non-zero summand of ϑay ·ϑaz. Now, since y ∈ τ · (S+ϑ T ),

there exist s1 ∈ S, t1 ∈ T and b ∈ Z>0 such that αb y
b τ s1,b τ t1

̸= 0, meaning ϑby is a non-zero summand of
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ϑbτs1 · ϑbτt1 . Similarly, z ∈ (1− τ) · (S +ϑ T ) implies the existence of s2 ∈ S, t2 ∈ T and c ∈ Z>0 such that
αc z
c (1−τ) s2,c (1−τ) t2

̸= 0, meaning ϑcz is a non-zero summand of ϑc(1−τ)s2 · ϑc(1−τ)t2 . Then, it follows that

ϑabcx is a non-zero summand of ϑabcy · ϑabcz,
ϑabcy is a non-zero summand of ϑabcτs1 · ϑabcτt1 ,
ϑabcz is a non-zero summand of ϑabc(1−τ)s2 · ϑabc(1−τ)t2 .

Then, we have that

ϑabcx is a non-zero summand of ϑabcτs1 · ϑabc(1−τ)s2 · ϑabcτt1 · ϑabc(1−τ)t2 . (1)

Now, consider the expressions

ϑabcτs1 · ϑabc(1−τ)s2 =
∑

abcs∈Utrop(Z)

αabcs
abcτs1,abc(1−τ)s2

ϑabcs, and

ϑabcτt1 · ϑabc(1−τ)t2 =
∑

abct∈Utrop(Z)

αabcs
abcτt1,abc(1−τ)t2

ϑabct.

By Equation (1) and Remark 16 we have that ϑabcx is a non-zero summand of ϑabcs · ϑabct for some s ∈ S
and t ∈ T . Therefore, we have that x ∈ S+ϑT and we conclude that τ(S+ϑT )+ϑ (1−τ)(S+ϑT ) ⊆ S+ϑT .

For the other containment, consider x ∈ S +ϑ T . If we consider the line segment τx+ (1− τ)x, then we
have that x ∈ τ{x}+ϑ (1− τ){x}. So, since τ{x}+ϑ (1− τ){x} ⊂ τ(S+ϑ T )+ϑ (1− τ)(S+ϑ T ) we conclude
that S +ϑ T ⊆ τ(S +ϑ T ) +ϑ (1− τ)(S +ϑ T ).

Corollary 23. Let S and T be subsets of U trop(Q). Then

convBL(S +ϑ T ) ⊆ convBL(S) +ϑ convBL(T ).

Proof. Since S +ϑ T ⊆ convBL(S) +ϑ convBL(T ), we have that

convBL(S +ϑ T ) ⊆ convBL(convBL(S) +ϑ convBL(T )).

Note that convBL(S) and convBL(T ) are broken line convex sets, then Proposition 22 implies that convBL(S)+ϑ

convBL(T ) is a broken line convex set and consequently we obtain that convBL(convBL(S) +ϑ convBL(T )) =
convBL(S) +ϑ convBL(T ). The claim follows.

Definition 24. Let αr
p1,...,pd

denote the coefficient of ϑr in the expansion of ϑp1
· · ·ϑpd

. For S ⊂ U trop(Q)
define

Sd :=

{
u ∈ U trop(Q) : α(a1+···+ad)u

a1 s1,...,ad sd
̸= 0 for some s1, . . . , sd ∈ S and a1, . . . , ad ∈ Z≥0, with

d∑
i=1

ai ̸= 0

}
.

Lemma 25. We have a filtration S = S1 ⊂ S2 ⊂ · · · .
Proof. The first equality is immediate from the definition of S1. For the remaining containments, set ad+1 = 0
to find Sd ⊂ Sd+1.

Lemma 26. If x ∈ Sd1
, y ∈ Sd2

, and α
(n+m)z
n x,my ̸= 0, then z ∈ Sd1+d2

.

Proof. First, since x ∈ Sd1
, we have αa x

a1 s1,...,ad1
sd1

̸= 0 for some s1, . . . , sd1
∈ S and a1, . . . , ad1

∈ Z≥0 with

a :=
∑d1

i=1 ai ̸= 0, and

ϑa x is a non-zero summand of ϑa1 s1 · · ·ϑad1
sd1
. (2)

Similarly, since y ∈ Sd2 , we have αb y
b1 r1,...,bd2 rd2

̸= 0 for some r1, . . . , rd2 ∈ S and b1, . . . , bd2 ∈ Z≥0 with

b :=
∑d2

i=1 bi ̸= 0, and

ϑb y is a non-zero summand of ϑb1 r1 · · ·ϑbd2 rd2
. (3)
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Next, since α
(n+m)z
n x,my ̸= 0,

ϑ(n+m)z is a non-zero summand of ϑnx · ϑmy. (4)

We claim that ϑab (n+m)z is a non-zero summand of

ϑnb a1 s1 · · ·ϑnb ad1
sd1

· ϑm a b1 r1 · · ·ϑm a bd2 rd2
.

First, using Lemma 18, we can conclude from (2) that

ϑn ab x is a non-zero summand of ϑnb a1 s1 · · ·ϑnb ad1
sd1
. (5)

The same argument applied to (3) shows

ϑm ab y is a non-zero summand of ϑm a b1 r1 · · ·ϑm a bd2 rd2
. (6)

Next, since the structure constants are non-negative, by Remark 17, (5), and (6),

non-zero summands of ϑn ab x · ϑm ab y must also be

non-zero summands of ϑnb a1 s1 · · ·ϑnb ad1
sd1

· ϑm a b1 r1 · · ·ϑm a bd2 rd2
.

(7)

Finally, we can conclude from Lemma 18 and (4) that

ϑ(n+m)ab z is a non-zero summand of ϑn ab x · ϑm ab y. (8)

Combining (7) and (8) finishes the proof.

Lemma 27. S is positive if and only if for any n > 0, a1, . . . , an ∈ Z≥0, si ∈ aiS(Z), and r ∈ U trop(Z)
with αr

s1,...,sn ̸= 0, we have r ∈ (a1 + · · ·+ an)S.

Proof. For n = 2, this is the definition of positivity, so the if part holds. Next, if S is positive, we use
associativity of theta function multiplication to conclude the only if part.

Lemma 28. For all d ∈ Z>0, we have Sd ⊂ convBL(S).

Proof. If u ∈ Sd, we have α
(a1+···ad)u
a1 s1,...,ad sd ̸= 0 for some s1, . . . , sd ∈ S and a1, . . . , ad ∈ Z≥0 with

∑d
i=1 ai ̸= 0.

As S ⊂ convBL(S), and positivity is equivalent to broken line convexity, (a1 + · · · + ad)u must be in
(a1 + · · · + ad) convBL(S). By Lemma 27, failure of this would contradict positivity of convBL(S). So
u ⊂ convBL(S), and Sd ⊂ convBL(S).

Corollary 29. Let S be any subset of U trop(Q). Then

convBL(S) =
⋃
d≥1

Sd.

Proof. By Lemma 26, the infinite union
⋃

d≥1 Sd is positive, and hence broken line convex. As it is broken
line convex and contains S (see Lemma 25), we find that

convBL(S) ⊂
⋃
d≥1

Sd.

By Lemma 28, we observe the opposite inclusion:

convBL(S) ⊃
⋃
d≥1

Sd.
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Lemma 30. Let S and T be subsets of U trop(Q). For all d, e ∈ Z>0,

Sd +ϑ Te ⊂ (S +ϑ T )de.

Proof. Let x be in the sum Sd +ϑ Te. Then there is some s ∈ Sd, t ∈ Te, and a ∈ Z>0 such that as, at, and
ax are all integral and αax

as,at ̸= 0. That is,

ϑax is a non-zero summand of ϑas · ϑat. (9)

Now, since s ∈ Sd, there exist s1, . . . , sd ∈ S and b1, . . . , bd ∈ Z≥0 such that αb s
b1 s1,...,bd sd

̸= 0, where
b := b1 + · · ·+ bd. That is,

ϑb s is a non-zero summand of ϑb1s1 · · ·ϑbdsd . (10)

If any of these integers bi is 0, we may simply replace d by a smaller d′ using Lemma 25. So, we may assume
bi > 0 for all i ∈ {1, . . . , d}. Similarly, since t ∈ Te, there exist t1, . . . , te ∈ T and c1, . . . , ce ∈ Z≥0 such that
αc t
c1 t1,...,ce te ̸= 0, where c := c1 + · · ·+ ce. That is,

ϑc t is a non-zero summand of ϑc1t1 · · ·ϑcete . (11)

As before, we may assume cj > 0 for all j ∈ {1, . . . , e}.
Rescaling coefficients using Lemma 18, the facts (9), (10), and (11) imply

ϑab c x is a non-zero summand of ϑab c s · ϑab c t, (12)

ϑab c s is a non-zero summand of ϑa b1 c s1 · · ·ϑa bd c sd , (13)

and

ϑab c t is a non-zero summand of ϑab c1 t1 · · ·ϑab ce te (14)

respectively. Moreover, using Lemma 19, we have that

ϑa bi c si is a non-zero summand of ϑa bi c1 si · · ·ϑa bi ce si (15)

and

ϑab cj tj is a non-zero summand of ϑa b1 cj tj · · ·ϑa bd cj tj . (16)

Next, using Remarks 16 and 17, the facts (12), (13), (14), (15), and (16) together imply

ϑab c x is a non-zero summand of
∏

i∈{1,...,d}
j∈{1,...,e}

ϑabicjsi · ϑabicjtj .
(17)

Expanding each product ϑabicjsi · ϑabicjtj and using Remark 16 once more, we find that

ϑab c x is a non-zero summand of
∏

i∈{1,...,d}
j∈{1,...,e}

ϑabicjrij
(18)

for some collections of elements {rij ∈ S +ϑ T : i ∈ {1, . . . , d} , j ∈ {1, . . . , e}}. Finally, observe that∑
i∈{1,...,d}
j∈{1,...,e}

a bi cj = abc.
(19)

Thus, (18) and (19) imply x ∈ (S +ϑ T )de, as claimed.
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Corollary 31. Let S and T be subsets of U trop(Q). Then

convBL(S) +ϑ convBL(T ) ⊂ convBL(S +ϑ T ).

Proof. This is an immediate consequence of Corollary 29 and Lemma 30.

Combining Corollary 23 and Corollary 31, we obtain that the tropical Minkowski sum and broken line
convex hull are compatible in the following sense:

Theorem 32. Let S and T be subsets of U trop(Q). Then

convBL(S +ϑ T ) = convBL(S) +ϑ convBL(T ).

To conclude this section, we provide another result relating the tropical Minkowski sum and broken line
convex hull. It will come in handy in later sections.

Proposition 33. Let S =
⋃

i∈I S
i, where each Si ⊂ U trop(Q) is broken line convex. Then

convBL(S) =
⋃

(ai:i∈I)∈(Q≥0)
I∑

i∈I ai=1

(∑
ϑ

i∈I

aiS
i

)
.

(20)

Proof. First, let (ai : i ∈ I) ∈ (Q≥0)
I with

∑
i∈I ai = 1, and let s ∈

∑
ϑ

i∈I

aiS
i. Each aiS

i is broken line

convex since each Si is. If |I| = 1, there is nothing to show. Next let I = {1, 2}. Then there is some
x1 ∈ a1S

1, x2 ∈ a2S
2, and c ∈ Z>0 such that c x1, c x2, and c s are all integral and αc s

c x1,c x2
̸= 0. The

case in which either ai is zero reduces to the |I| = 1 case, so we may assume each ai is non-zero. Write
ai =

ni

di
, with ni, di ∈ Z>0. Then αcd1d2s

cd1d2x1,cd1d2x2
̸= 0 as well by Lemma 18. But cd1d2x1 ∈ cd2n1S

1 and

cd1d2x2 ∈ cd1n2S
2. So [CMN21, Proposition 4.10, Theorem 6.1] implies there is a broken line segment from

d1

n1
x1 = a1

−1x1 to d2

n2
x2 = a2

−1x2 passing through d1d2

d2n1+d1n2
s = (a1 + a2)

−1s = s. Since ai
−1xi ∈ Si ⊂ S,

this implies s ∈ convBL(S). Now suppose the right side of (20) is contained in the left whenever |I| < r, and
consider the case I = {1, . . . , r}. If any ai = 0, we return to the |I| < r case. So assume each ai is non-zero.
Let a = a1 + · · ·+ ar−1, and let a′i =

ai

a for i ∈ I \ {r} =: I ′. By the induction hypothesis, we know that

∑
ϑ

i∈I′

a′iS
i ⊂ convBL

(⋃
i∈I′

Si

)
=: S′.

So, s ∈
∑

ϑ
i∈I

aiS
i ⊂ aS′ +ϑ arS

r. But by the induction hypothesis, aS′ +ϑ arS
r ⊂ convBL(S

′ ∪ Sr) =

convBL(S). So

⋃
(ai:i∈I)∈(Q≥0)

I∑
i∈I ai=1

(∑
ϑ

i∈I

aiS
i

)
⊂ convBL(S).

Now suppose s ∈ convBL(S). By Corollary 29, s ∈ Sd (from Definition 24) for some d ∈ Z>0. So, we can
find some s1, . . . , sd ∈ S and a1, . . . , ad ∈ Z≥0 with a1+ · · ·+ ad ̸= 0, the tropical points a1 s1, . . . , ad sd, and

(a1 + · · ·+ ad)s all integral, and the structure constant α
(a1+···+ad)s
a1 s1,...,ad sd ̸= 0. Each sj is in some Si. Let

⋃
i∈I Ji

be a decomposition of {1, . . . , d} as a disjoint union such that j ∈ Ji only if sj ∈ Si.3 Now we have that

ϑ(a1+···+ad)s is a non-zero summand of
∏
i∈I

∏
j∈Ji

ϑajsj

 =
∏
i∈I

 ∑
x∈Utrop(Z)

αx
{ajsj :j∈Ji}ϑx

 .

3The point here is that sj may be contained in multiple Si’s. We simply choose one such i.
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By Remark 16, we can find a collection
{
xi ∈ U trop(Z) : i ∈ I, αxi

{ajsj :j∈Ji} ̸= 0
}

such that

ϑ(a1+···+ad)s is a non-zero summand of
∏
i∈I

ϑxi .

Since Si is broken line convex, xi ∈ (
∑

j∈Ji
aj)S

i. Then

(a1 + · · ·+ ad)s ∈
∑

ϑ
i∈I

aJiS
i,

where aJi
:=
∑

j∈Ji
aj , and

s ∈
∑

ϑ
i∈I

aJi

(a1 + · · ·+ ad)
Si.

We conclude that

convBL(S) ⊂
⋃

(ai:i∈I)∈(Q≥0)
I∑

i∈I ai=1

(∑
ϑ

i∈I

aiS
i

)

as well.

4 Convexity for functions on U trop(Q)

4.1 Definition and characterization

In this section we describe what it means for a function on U trop(Q) to be convex, and we prove some key
results about these convex functions.

Definition 34. Let S ⊂ U trop(Q) be a broken line convex set. A function φ : S → Q is convex with respect
to broken lines if for any broken line segment γ : [t1, t2] → S, we have that

φ(γ(t)) ≥
(
t2 − t

t2 − t1

)
φ(γ(t1)) +

(
t− t1
t2 − t1

)
φ(γ(t2)) (21)

for all t ∈ [t1, t2].

Proposition 35. Let S ⊂ U trop(Q) be broken line convex, and let φ : S → Q be convex with respect to
broken lines. If s1, . . . , sd, s ∈ S, a1, . . . , ad ∈ Q≥0with a1s1, . . . , adsd, and (a1 + · · ·+ ad)s all integral, and

α
(a1+···+ad)s
a1s1,...,adsd ̸= 0, then

φ(s) ≥
d∑

i=1

ai
a1 + · · ·+ ad

φ(si). (22)

Proof. Note first that if d = 1, the inequality trivially becomes an equality. For d = 2, suppose we have s1,
s2, s, a1, and a2 as in the proposition statement. Assume for now that a1 and a2 are integral. Then by
[CMN21, Proposition 4.10, Theorem 6.1] there exists some broken line segment γ : [0, τ ] → U trop(Q) with

γ(0) = s1, γ(τ) = s2, and γ
(

a2

a1+a2
τ
)
= s. Next, if a1 and a2 are only rational, we can clear denominators,

writing a′1 = λa1 and a′2 = λa2. By Lemma 18, α
(a′

1+a′
2)s

a′
1s1,a

′
2s2

̸= 0 as well. Thus we obtain a broken line segment

γ : [0, τ ] → U trop(Q) with γ(0) = s1, γ(τ) = s2, and γ
(

a′
2

a′
1+a′

2
τ
)
= s. Note however that

a′
2

a′
1+a′

2
= a2

a1+a2
, so

we have precisely the same outcome as the case of integral coefficients.
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Since φ is convex with respect to broken lines, we have

φ

(
γ

(
a2

a1 + a2
τ

))
≥
(
1− a2

a1 + a2

)
φ(γ(0)) +

a2
a1 + a2

φ(γ(τ)),

so

φ (s) ≥ a1
a1 + a2

φ(s1) +
a2

a1 + a2
φ(s2).

This establishes the claim for d = 2. Next, suppose the claim holds for d = k. If s1, . . . , sk+1, s, a1, . . . , ak+1

are as in the proposition statement, then α
(a1+···+ak+1)s
a1 s1,...,ak+1 sk+1 ̸= 0. That is,

ϑ(a1+···+ak+1)s is a non-zero summand of and

k+1∏
i=1

ϑai si .

Expanding the first k terms of the product and using linear independence of theta functions, we see that

ϑ(a1+···+ak+1)s must be a non-zero summand of ϑ(a1+···+ak)s′ϑak+1 sk+1

for some (a1 + · · ·+ ak) s
′ with α(a1+···+ak)s

′
a1 s1,...,ak sk ̸= 0. So, by the induction hypothesis we have

φ(s) ≥ a1 + · · ·+ ak
a1 + · · ·+ ak+1

φ(s′) +
ak+1

a1 + · · ·+ ak+1
φ(sk+1)

≥ a1 + · · ·+ ak
a1 + · · ·+ ak+1

(
k∑

i=1

ai
a1 + · · ·+ ak

φ(si)

)
+

ak+1

a1 + · · ·+ ak+1
φ(sk+1)

=

k+1∑
i=1

ai
a1 + · · ·+ ak+1

φ(si)

proving the claim.

Remark 36. In fact, Proposition 35 provides an equivalent characterization of functions φ : S → Q which
are convex with respect to broken lines. That is, we also have the opposite implication. Suppose for any

s1, . . . , sd, s ∈ S, a1, . . . , ad ∈ Q≥0 with a1s1, . . . , adsd, and (a1+ · · ·+ad)s all integral, and α(a1+···+ad)s
a1s1,...,adsd ̸= 0,

we have

φ(s) ≥
d∑

i=1

ai
a1 + · · ·+ ad

φ(si).

Then we claim φ is convex with respect to broken lines. To see this, consider a broken line segment
γ : [t1, t2] → S, and let γ be the reparametrized broken line segment γ : [0, τ = t2 − t1] → S defined by
γ(t) = γ(t− t1). Clearly,

φ(γ(t)) ≥
(
t2 − t

t2 − t1

)
φ(γ(t1)) +

(
t− t1
t2 − t1

)
φ(γ(t2))

for all t ∈ [t1, t2] if and only if

φ(γ(t)) ≥ τ − t

τ
φ(γ(0)) +

t

τ
φ(γ(τ))

for all t ∈ [0, τ ]. We may always write t = b
a+bτ . By [CMN21, Proposition 5.4, Theorem 6.1], we may choose

a and b such that a γ(0), b γ(τ), and (a+ b) γ(τ) are all integral and α
(a+b) γ(τ)
a γ(0),b γ(τ) ̸= 0. Then

φ

(
γ

(
b

a+ b
τ

))
≥ a

a+ b
φ (γ (0)) +

b

a+ b
φ (γ (τ))

=
τ − t

τ
φ (γ (0)) +

t

τ
φ (γ (τ)) .
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4.2 Equivalence of [GHKK18]’s “min-convex” and “decreasing”

Proposition 35 and Remark 36 allow us to resolve a question posed by Gross-Hacking-Keel-Kontsevich in
[GHKK18, Remark 8.5], and we take a slight detour to do so here.

Proposition 37. A piecewise linear function φ : U trop(Q) → Q is convex with respect to broken lines if and
only if it is decreasing in the sense of [GHKK18, Definition 8.3].

Proof. First, suppose φ is convex with respect to broken lines. Let s1, s2, and r be in U trop(Z) and satisfy
αr
s1,s2 ̸= 0. We need to show that φ(r) ≥ φ(s1)+φ(s2). Comparing to Proposition 35, we have a1 = a2 = 1,

and r = 2s. Then

φ(s) ≥ 1

2
φ(s1) +

1

2
φ(s2)

and

φ(r) = φ(2s) = 2φ(s) ≥ φ(s1) + φ(s2).

That is, φ is decreasing.
For the other direction, we use an induction argument very similar to the one used in Proposition 35.

Suppose φ is decreasing. Let s1, . . . , sd, s ∈ U trop(Q) and a1, . . . , ad ∈ Q≥0, with a1 s1, . . . , ad sd, and

(a1+ · · ·+ad)s all integral and α(a1+···+ad)s
a1s1,...,adsd ̸= 0. We need to show that (22) holds for φ. For the d = 1 case,

(22) trivially reduces to an equality. For d = 2, since φ is decreasing we have

φ((a1 + a2)s) ≥ φ(a1s1) + φ(a2s2),

which implies

φ(s) ≥ a1
a1 + a2

φ(s1) +
a2

a1 + a2
φ(s2)

by piecewise linearity of φ. So (22) holds for d = 2. Now assume it holds for d = k, and consider the case
d = k + 1. As we argued in Proposition 35,

ϑ(a1+···+ak+1)s must be a non-zero summand of ϑ(a1+···+ak)s′ϑak+1 sk+1

for some (a1 + · · ·+ ak) s
′ with α(a1+···+ak)s

′
a1 s1,...,ak sk ̸= 0. So, by the induction hypothesis we have

φ(s) ≥ a1 + · · ·+ ak
a1 + · · ·+ ak+1

φ(s′) +
ak+1

a1 + · · ·+ ak+1
φ(sk+1)

≥ a1 + · · ·+ ak
a1 + · · ·+ ak+1

(
k∑

i=1

ai
a1 + · · ·+ ak

φ(si)

)
+

ak+1

a1 + · · ·+ ak+1
φ(sk+1)

=

k+1∑
i=1

ai
a1 + · · ·+ ak+1

φ(si),

which proves the claim.

Proposition 38. A piecewise linear function φ : U trop(Q) → Q is convex with respect to broken lines if and
only if it is min-convex in the sense of [GHKK18, Definition 8.2].

Proof. First, suppose φ is convex with respect to broken lines. We need to verify that dφ is decreasing on
γ̇ for all broken lines γ. Suppose γ crosses a wall at time τ . Then for sufficiently small ϵ > 0, we have
φ(γ(τ ± ϵ)) = φ(γ(τ))± ϵdφγ(τ±ϵ)(γ̇(τ ± ϵ)) and

φ(τ) ≥ 1

2

(
φ(τ)− ϵdφγ(τ−ϵ)(γ̇)

)
+

1

2

(
φ(τ) + ϵdφγ(τ+ϵ)(γ̇)

)
.

Simplifying, we find dφγ(τ−ϵ)(γ̇) ≥ dφγ(τ+ϵ)(γ̇) as desired.
The other direction follows from [GHKK18, Lemma 8.4] and Proposition 37.

Taken together, Propositions 37 and 38 resolve a question posed in [GHKK18, Remark 8.5]:

Corollary 39. The notions “min-convex” and “decreasing” of [GHKK18, Definitions 8.2 & 8.3] are equiv-
alent.
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4.3 Basic results

We now state and prove some basic results about functions which are convex with respect to broken lines.

Lemma 40. Let φ1, φ2 : S → Q be convex with respect to broken lines. Then φ1+φ2 is convex with respect
to broken lines.

Proof. This follows immediately from Definition 34.

Proposition 41. Let φ : U trop(Q) → Q be convex with respect to broken lines. Then

Ξφ,r :=
{
x ∈ U trop(Q) : φ(x) ≥ −r

}
is broken line convex.

Proof. By Proposition 21, this holds if and only if Ξφ,r = tΞφ,r +ϑ(1− t)Ξφ,r. We always have the inclusion
Ξφ,r ⊂ tΞφ,r +ϑ(1−t)Ξφ,r, so we just need to show the opposite inclusion. Let z ∈ tΞφ,r +ϑ(1−t)Ξφ,r. Then
there exists x ∈ tΞφ,r, y ∈ (1− t)Ξφ,r, and a ∈ Z>0 such that ax, ay, and az are all integral and αaz

ax,ay ̸= 0.
Define x′, y′ ∈ Ξφ,r by x = tx′, y = (1 − t)y′. Now, a = ta + (1 − t)a, so 0 ̸= αaz

ax,ay = αaz
atx′,a(1−t)y′ . Then

by Proposition 35,

φ(z) ≥ tφ(x′) + (1− t)φ(y′)

≥ t(−r) + (1− t)(−r)
= −r.

That is, z ∈ Ξφ,r.

Lemma 42. Let φ : U trop(Q) → Q be convex with respect to broken lines, and let γ : [t1, t2] → U trop(Q) be
a broken line segment satisfying

φ(γ(t)) =

(
t2 − t

t2 − t1

)
φ(γ(t1)) +

(
t− t1
t2 − t1

)
φ(γ(t2))

for some t ∈ (t1, t2). Then

φ(γ(t)) =

(
t2 − t

t2 − t1

)
φ(γ(t1)) +

(
t− t1
t2 − t1

)
φ(γ(t2))

for all t ∈ [t1, t2].

Proof. Suppose not. Then there is some t′ ∈ (t1, t2)
4, t′ ̸= t, with

φ(γ(t′)) >

(
t2 − t′

t2 − t1

)
φ(γ(t1)) +

(
t′ − t1
t2 − t1

)
φ(γ(t2)). (23)

The argument is identical for t′ < t and t′ > t, so without loss of generality, take t′ < t. Since φ is convex
with respect to broken lines, by restricting γ to [t′, t2] we find

φ(γ(t)) ≥
(
t2 − t

t2 − t′

)
φ(γ(t′)) +

(
t− t′

t2 − t′

)
φ(γ(t2)).

That is, (
t2 − t

t2 − t1

)
φ(γ(t1)) +

(
t− t1
t2 − t1

)
φ(γ(t2)) ≥

(
t2 − t

t2 − t′

)
φ(γ(t′)) +

(
t− t′

t2 − t′

)
φ(γ(t2)),

which upon simplifying yields(
t2 − t′

t2 − t1

)
φ(γ(t1)) +

(
t′ − t1
t2 − t1

)
φ(γ(t2)) ≥ φ(γ(t′)).

This contradicts the strict inequality (23).

4We take the open interval here since equality is clear for the endpoints t1 and t2.
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One type of function that will come up frequently in the remainder of the paper is simply given by
evaluation: ⟨ · , y⟩ : U trop(Q) → Q. For this reason, we introduce the following terminology.

Definition 43. We say a function φ : U trop(Q) → Q is tropically linear if φ = ⟨ · , y⟩ for some y ∈
(U∨)trop(Q). We also use the terminology for a function ψ on a Q≥0-invariant subset σ in U trop(Q) if there
exists an extension of ψ from σ to U trop(Q) which is tropically linear.

The following results are a corollaries of Theorem 9.

Corollary 44. Let φ : U trop(Q) → Q be tropically linear, and consider a collection of integral tropical points
x1, . . . , xd ∈ U trop(Z). Then

d∑
i=1

φ(xi) = min
{
φ(x) : x ∈ U trop(Z), αx

x1,...,xd
̸= 0
}
.

Proof. Let φ = ⟨ · , yφ⟩, and let ayφ be integral for some a > 0. Then

ayφ (ϑx1) + · · ·+ ayφ (ϑxd
) = ayφ (ϑx1 · · ·ϑxd

) = min
{
ayφ(ϑx) : x ∈ U trop(Z), αx

x1,...,xd
̸= 0
}
.

But then

d∑
i=1

φ(xi) = min
{
φ(x) : x ∈ U trop(Z), αx

x1,...,xd
̸= 0
}

as claimed.

Corollary 45. A tropically linear function is convex with respect to broken lines.

Proof. Let φ : U trop(Q) → Q be tropically linear, and consider any x1, . . . , xd, x ∈ U trop(Q), a1, . . . , ad ∈ Q≥0

with a1x1, . . . , adxd, and (a1 + · · ·+ ad)x all integral, and α
(a1+···+ad)x
a1x1,...,adxd ̸= 0. By Corollary 44,

d∑
i=1

φ(aixi) = min
{
φ(s) : s ∈ U trop(Z), αs

a1x1,...,adxd
̸= 0
}
.

So, we have that

φ ((a1 + · · ·+ ad)x) ≥
d∑

i=1

φ(aixi),

and

φ (x) ≥
d∑

i=1

ai
a1 + · · ·+ ad

φ(xi).

By Remark 36, φ is convex with respect to broken lines.

5 Broken line convex polyhedral geometry

Let U be a cluster variety for which the full Fock-Goncharov conjecture holds and let U∨ be its Fock-
Goncharov dual.

We borrow some notation from [Brø83].

Definition 46. For y ∈ (U∨)trop(Q) and r ∈ Q denote by K(y, r) the set {x ∈ U trop(Q) : ⟨x, y⟩ ≥ −r}. We
call K(y, r) a tropical half-space, and we call its boundary H(y, r) := {x ∈ U trop(Q) : ⟨x, y⟩ = −r} a tropical
hyperplane. For S ⊂ U trop(Q), we say K(y, r) is a supporting tropical half-space for S and H(y, r) is a
supporting tropical hyperplane for S if S ⊂ K(y, r) and S ∩H(y, r) ̸= ∅. We define tropical half-spaces and
hyperplanes in (U∨)trop(Q) analogously.
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Remark 47. As ⟨ · , ay⟩ = a ⟨ · , y⟩ for all a > 0, we have that K(y, r) = K(ay, ar) for all a > 0.

Lemma 48. A tropical half-space is broken line convex.

Proof. By Corollary 45, a tropically linear function is convex with respect to broken lines. Then the claim
follows from Proposition 41.

Definition 49. A subset S ⊂ U trop(Q) is polyhedral if

S =
⋂
i∈I

K(yi, ri)

for some finite indexing set I. We will always take yi ∈ (U∨)trop(Q) and ri ∈ Q.5 If additionally S is
bounded, we say it is polytopal.

5.1 Faces

Definition 50. Let S ⊂ U trop(Q) be broken line convex. We say that a subset F of S is a face of S if
there is a tropical half-space K(y, r) ⊃ S with F = S ∩ H(y, r). We say this face F is a proper face if
F /∈ {∅, S}. We call 0-dimensional faces vertices, 1-dimensional faces edges, and codimension 1 faces facets.
By convention, we view ∅ as a −1-dimensional face. We denote the set of faces of S by FS .

Remark 51. We will typically discuss faces of polyhedral sets rather than arbitrary broken line convex sets.
However, the definition makes sense for arbitrary broken line convex sets, and we will want to use the face
terminology for certain sets prior to proving that they are in fact polyhedral.

Warning: Unlike in usual convex geometry, faces in broken line convex geometry need not
be broken line convex.

For an example of this phenomenon, see Figure 2.

1 + z(0,1)

1 + z(−1,0)

1 + z(−1,1)

F

Figure 2: A polytopal set S ⊂ (A∨)trop(Q) for the A cluster variety of type A2. The
indicated face F is not broken line convex. As is standard, to draw this picture we identify
(A∨)trop(Q) with Q2 via a choice of seed.

However, faces do satisfy some weaker notion of convexity. To motivate this weaker convexity notion, we
make an observation about tropical hyperplanes.

Proposition 52. Every pair of points x1, x2 in a tropical hyperplane H(y, r) is connected by a broken line
segment γ whose support is contained in H(y, r).

5In usual convex geometry, this reduces to the notion of “rational polyhedral”. As we only work in the rational setting in
this paper, we drop the “rational” descriptor from our terminology here.
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Proof. This is a simple corollary of Theorem 9 and Lemma 42. By the Theorem 9, there exists a broken line
segment γ : [t1, t2] → U trop(Q) with endpoints x1 and x2 such that〈

γ

(
t1 + t2

2

)
, y

〉
=

1

2
⟨γ (t1) , y⟩+

1

2
⟨γ (t2) , y⟩

=
1

2
⟨x1, y⟩+

1

2
⟨x2, y⟩

= −r.

Then by Lemma 42,

φ(γ(t)) = −
(
t2 − t

t2 − t1

)
r −

(
t− t1
t2 − t1

)
r

= −r

for all t ∈ [t1, t2]. That is, the support of γ is contained in H(y, r).

In light of Proposition 52, we make the following definition.

Definition 53. We say a subset S ⊂ U trop(Q) is weakly convex if for every pair of points s1, s2 ∈ S, there
exists a broken line segment with endpoints s1 and s2 whose support is contained in S.

Clearly, the notions broken line convexity and weak convexity coincide in usual convex geometry. They
are very different notions in U trop(Q), but both play important roles in in the theory of broken line convex
geometry. In fact, the two convexity notions interact with each other:

Proposition 54. Let S and S′ be subsets of U trop(Q) with S broken line convex and S′ weakly convex. Then
S ∩ S′ is weakly convex.

Proof. Let s1, s2 ∈ S ∩S′. Since S′ is weakly convex, there exists a broken line segment γ with endpoints s1
and s2 whose support is contained in S′. Since S is broken line convex, the support of γ must be contained
in S as well. Hence the support of γ is contained in S ∩ S′, proving the claim.

Corollary 55. Every face of a polyhedral set is weakly convex.

Proof. By definition, a face F of a polyhedral set S ⊂ U trop(Q) is of the form

F = S ∩H(y, r)

for H(y, r) a tropical hyperplane at the boundary of a tropical half-space K(y, r) which contains S. The
polyhedral set S is broken line convex, and by Proposition 52, H(y, r) is weakly convex.

In usual convex geometry, the set of faces of a polyhedron forms a polyhedral complex. Unfortunately, in
general the faces of a polyhedral set in U trop(Q) will not form such a complex. For instance, if we consider
the bigon of Figure 3, the intersection of the pair of facets is a pair of vertices– so in this instance the
intersection of two faces is not a face, but rather a union of faces.
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1 + z(0,1)

1 + z(−1,0)

1 + z(−1,1)

(−1, 1)

(1,−1)

Figure 3: A bigon S in (A∨)trop(Q) together with its faces FS for the A cluster variety of
type A2. Note that the intersection of the facets is a pair of vertices rather than a single
face.

Nevertheless, the set of faces of a polyhedral set has a structure very reminiscent of a polyhedral complex.
To make this precise, we introduce the following definition:

Definition 56. Let P be a set of subsets of U trop(Q). We say that P is a pseudo-complex if it has the
following properties:

1. If P ∈ P, then there is a subset A of P with

∂P =
⋃

P ′∈A
P ′.

2. If P1, P2 ∈ P, then there is a subset B of P with

P1 ∩ P2 =
⋃
P∈B

P.

3. If P1, P2 ∈ P and P1 ∩ P2 ⊊ P1, then

P1 ∩ P2 ⊂ ∂P1.

Proposition 57. The set of faces FS of a polyhedral set S ⊂ U trop(Q) forms a pseudo-complex.

To establish Proposition 57, we will need a pair of lemmas:

Lemma 58. Let S =
⋂

i∈I K(yi, ri), and let y ∈
∑

ϑ
i∈I

yi and r =
∑
i∈I

ri. Then S ⊂ K(y, r) and

S ∩H(y, r) ⊂
(
S ∩

⋂
i∈I

H(yi, ri)

)
.

Proof. Let x ∈ S, then we have that ⟨x, yi⟩ ≥ −ri. By Proposition 35,

⟨x, y⟩ ≥
∑
i∈I

⟨x, yi⟩ ≥ −
∑
i∈I

ri = −r.

So x ∈ K(y, r).
Now let x ∈ S ∩H(y, r). Then

−r = ⟨x, y⟩ ≥
∑
i∈I

⟨x, yi⟩ ≥ −
∑
i∈I

ri = −r,

and we must have equality throughout. That is, ⟨x, yi⟩ = −ri and x ∈ H(yi, ri) for all i ∈ I.
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Lemma 59. Let γ : [t1, t2] → U trop(Q) be a broken line segment whose support is contained in H(y1, r1) ∩
K(y2, r2). If supp(γ) ∩H(y2, r2) is one dimensional, then supp(γ) ⊂ H(y2, r2).

Proof. By restricting the domain of γ and reversing the direction of γ as needed, we may reduce to the case
in which γ([t1, τ ]) ⊂ H(y1, r1) ∩H(y2, r2) for some τ ∈ (t1, t2). Without hitting a wall, there is no way for
γ to leave the intersection H(y1, r1) ∩H(y2, r2), so suppose γ crosses the wall (d, fd(z

md)), with d ⊂ n⊥d , at
time τ . There are three possibilities for γ(τ + ϵ) for small ϵ > 0.

1. γ(τ + ϵ) ∈ H(y1, r1) ∩H(y2, r2)

2. ⟨γ(τ + ϵ), y2⟩ < −r2
3. ⟨γ(τ + ϵ), y2⟩ > −r2

We want eliminate Items 2 and 3. We immediately note that if ⟨γ(τ + ϵ), y2⟩ < −r2, then supp(γ) ̸⊂
K(y2, r2), eliminating Item 2.

Next, suppose ⟨γ(τ + ϵ), y2⟩ > −r2. Denote the velocity of γ immediately prior to crossing (d, fd(z
md))

by γ̇− and the velocity immediately after crossing by γ̇+. For some k ≥ 0, we have γ̇+ = γ̇− − kmd. We can
give a new broken line segment γ′ : [t′1, t

′
2] → U trop(Q) crossing (d, fd(z

md)) such that for some λ > 0 and
some small δ > 0

• γ′(t′1) = γ(t1),

• γ̇′− = λ (γ̇− − δmd),

• γ̇+ = λ (γ̇+ − δmd), and

• ⟨γ′(t′2), y2⟩ > −r2.
The factor of λ above is simply to ensure we can make exponent vectors integral. With this in mind, since
γ̇+ = γ̇− − kmd pertains to an allowed bend and ⟨nd,md⟩ = 0, for some λ > 0 we have that

γ̇′+ = λ (γ̇+ − δmd) = λ ((γ̇− − kmd)− δmd) = λ ((γ̇− − δmd)− kmd) = γ̇′− − λkmd

is also an allowed bend. See Figure 4 for an illustration of this scenario.

K(y
2 , r2 )

(d, fd(z
md))

γ|
[τ−

ϵ,τ
+
ϵ]

γ′

Figure 4: Schematic of γ|[τ−ϵ,τ+ϵ] and γ
′ as detailed above.

However, this broken line segment γ′ has endpoints in K(y2, r2), while having support not contained in
K(y2, r2). In particular, the point at which γ′ crosses (d, fd(zmd)) does not lie in K(y2, r2). This contradicts
broken line convexity of K(y2, r2).

Proof of Proposition 57. We begin with Item 1 of Definition 56. For the face F = ∅, the statement is
vacuous. So consider a face F ̸= ∅. Then F is of the form F = H(y, r) ∩ S for some supporting tropical
hyperplane H(y, r). Let

S =
⋂
i∈I

K(yi, ri)
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be a presentation of S. Necessarily, the boundary of F is obtained by intersection with some of the tropical
hyperplanes H(yi, ri). Precisely, define

IF :=

J ⊂ I :

F ∩
⋂
j∈J

H(yj , rj)

 ⊊ F

 .

Then

∂F = F ∩
⋃

J∈IF

⋂
j∈J

H(yj , rj).

For shorthand, write

FJ :=

F ∩
⋂
j∈J

H(yj , rj)

 ,

so ∂F =
⋃

J∈IF
FJ . Observe that

FJ =

H(y, r) ∩
⋂
j∈J

H(yj , rj)

 ∩ S.

Now set r′ = r +
∑

j∈J rj and let y′ ∈ y+ϑ

∑
ϑ
yj . Then by Lemma 58,K(y, r) ∩
⋂
j∈J

K(yj , rj)

 ⊂ K(y′, r′)

and

S ∩H(y′, r′) ⊂ FJ .

Moreover, by Corollary 44, for each x ∈ FJ , there exists some such y′x ∈ y+ϑ

∑
ϑ
yj with H(y′x, r

′) a

supporting tropical hyperplane containing x. That is, Fx := H(y′x, r
′) ∩ S is a face of S containing x. This

establishes Item 1.
Now we turn our attention to Item 2 of Definition 56, whose proof is very similar to the one above.

As before, if F1 ∩ F2 = ∅, the claim trivially holds. Suppose F1 ∩ F2 ̸= ∅, and let Fi = H(yi, ri) ∩ S,
where H(yi, ri) is a supporting tropical hyperplane. Now Lemma 58 and Corollary 44 imply that for each
x ∈ F1 ∩ F2, there is a supporting tropical hyperplane H(yx, r1 + r2) containing x such that K(y1, r1) ∩
K(y2, r2) ⊂ K(yx, r1+ r2) and Fx := S∩H(yx, r1+ r2) ⊂ (S ∩H(y1, r1) ∩H(y2, r2)) = F1∩F2, establishing
Item 2.

Finally, for Item 3 of Definition 56, let Fi = H(yi, ri) ∩ S. Since F1 ∩ F2 is properly contained in F1,
for some x ∈ F1 we have ⟨x, y2⟩ > −r2. However, tropically linear functions are continuous so this implies
⟨ · , y2⟩ > −r2 on an open neighborhood of x. Now consider a broken line segment contained in F1 which
begins at x and proceeds to some x′ with ⟨x′, y2⟩ = −r2. (If no such broken line segment exists, then
F1 ∩ F2 = ∅, and we are done.) By Lemma 59, this broken line segment cannot be extended in such a way
that a positive length subsegment lies in H(y1, r) ∩ H(y2, r). Then x′ must in fact lie at the boundary of
F1.

Proposition 60. Let F be a proper face of a polyhedral subset S ⊂ U trop(Q). Then F is not contained in
convBL(S \ F ).
Proof. F is of the form F = H(y, r) ∩ S for some supporting tropical hyperplane H(y, r) for S. The open
tropical half-space K(y, r) \H(y, r) is broken line convex, so its intersection with S is as well. But F is not
contained in this intersection.

22



5.2 The weak face fan

The other vitally important polyhedral complex in the theory of toric varieties is the fan. To pursue our
goal of a cluster version of Batyrev-Borisov duality, we will primarily be interested in a particular sort of
fan, namely a face fan. So, we now turn our attention to defining the broken line convex geometry analogue
of a face fan, and showing that it also forms a pseudo-complex.

Proposition 61. If S ⊂ U trop(Q) is weakly convex, then so is Q≥0 · S.
Proof. Consider an arbitrary pair of points λ1s1, λ2s2 ∈ Q≥0 · S. Let γ : [0, T ] → U trop(Q) be a broken
line segment with endpoints s1 and s2 whose support is contained in S. We will show that there is a broken
line segment γ̃ : [0, T̃ ] → U trop(Q) with endpoints λ1s1 and λ2s2 whose support is contained in Q≥0 · S. Let
us address a few trivial cases before turning our attention to the generic setting. If λ1 = λ2 =: λ, then we
can simply rescale the support of γ by λ while leaving the decoration monomials unchanged. The particular
cases of λ = 0 and λ = 1 are the constant broken line segment with image the origin and the original broken
line segment γ respectively. Next, if λi ̸= λj = 0, we may take a straight segment between the origin and
λisi.

The remaining cases are less obvious, but follow from results of [CMN21]. Assume λ1 and λ2 are both
non-zero. As in [CMN21], denote the initial exponent vector of a broken line η by I(η) and the exponent
vector of near the endpoint of η by m0(η). Define τ := λ2

λ1+λ2
T . Then the algorithm of [CMN21, §5] produces

a balanced pair of broken lines (γ(1), γ(2)) where, for some µ > 0,

• I(γ(i)) = µλisi,

• m0(γ
(1)) +m0(γ

(2)) = µ(λ1 + λ2)γ(τ), and

• γ(1)(0) = γ(2)(0) = µ(λ1 + λ2)γ(τ).

Moreover, in this algorithm the bending points of the broken line segment γ are positively proportional to
the bending points of the pair (γ(1), γ(2)). (In the non-generic case in which γ(τ) is a bending point, the
corresponding bend for the pair is by convention recorded in γ(2) in the algorithm.)

Next, we take this pair of broken lines (γ(1), γ(2)), together with the pair of integers a = b = 1, as
input for the algorithm of [CMN21, §4]. The result is a broken line segment γ : [0, T ] → U trop(Q) with
γ(0) = I(γ(1)) = µλ1s1 and γ(T ) = I(γ(2)) = µλ2s2, passing through µ

2 (λ1+λ2)γ(τ) at time 1
2T . As before,

in this algorithm the bending points of the broken line segment γ are positively proportional to the bending
points of the pair (γ(1), γ(2)), and thus positively proportional to the bending points of the broken line
segment γ. Then the endpoints of each straight segment L of γ are positively proportional to the endpoints
of the corresponding straight segment L of γ. As a result, each such L is in Q≥0 · L ⊂ Q≥0 · S.

Finally, we obtain the desired γ̃ by rescaling the support (and elapsed time) of γ by 1
µ .

Remark 62. Heuristically, in the proof of Proposition 61, we are translating between different tropical
representations of the statement:

ϑµ(λ1+λ2)γ(τ) is a non-zero summand of the product ϑµλ1s1ϑµλ2s2 .

In particular, if we consider the original input– the broken line segment γ and time τ– the tropical point
γ(τ) is viewed as a weighted average along γ of the tropical points γ(0) = s1 (with weight λ1) and γ(T ) = s2
(with weight λ2). Meanwhile, for the broken line segment γ, the tropical point µ

2 (λ1+λ2)γ(τ) is interpreted
as the (unweighted) average along γ of the tropical points µλ1s1 and µλ2s2.

Remark 63. Note that if we were to consider a broken line convex set S in Proposition 61 rather than just
a weakly convex set, then Q≥ · S would clearly be broken line convex. This follows immediately from the
equivalence of broken line convexity and positivity ([CMN21, Theorem 6.1]).

Definition 64. If S is weakly convex, we call Q≥0 · S the weak cone of S. For arbitrary S, we call
convBL(Q≥0 · S) the cone of S and denote it by Cone(S).

Definition 65. Let S ⊂ U trop(Q) be a full-dimensional polytopal set containing 0 in the interior. The weak
face fan of S, denoted Σ[S], is the following collection of weak cones in U trop(Q):

Σ[S] := {σF := Q≥0 · F : F ∈ FS} ∪ {0} .
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Proposition 66. Let S ⊂ U trop(Q) be a full-dimensional polytopal set containing 0 in the interior. Then
the weak face fan of S forms a pseudo-complex.

Proof. This follows almost immediately from Proposition 57. We will simply illustrate that Item 1 of
Definition 56 holds for Σ[S]. The remaining items are recovered similarly. The weak cone {0} has empty
boundary, so there is nothing to do in this case. Now let F ∈ FS . By Proposition 57 there is a subset AF

of FS such that

∂F =
⋃

F ′∈AF

F ′.

Let AσF
:= {σF ′ ∈ Σ[S] : F ′ ∈ AF } ∪ {0}. Then

∂σF =
⋃

τ∈AσF

τ.

We illustrate the weak face fan of the bigon from Figure 3 in Figure 5 below.

1 + z(0,1)

1 + z(−1,0)

1 + z(−1,1)

(−1, 1)

(1,−1)

Figure 5: On the left, the bigon S of Figure 3. On the right, the weak face fan Σ[S].
Note that for F either facet, σF is only weakly convex, not broken line convex. In fact,
convBL (σF ) = (A∨)trop(Q) for both facets.

In order to generalize the convex geometry duality of [Bor93] in §6, it will be convenient to have a notion
of support functions on weak face fans.

Definition 67. Let Σ[S] be the weak face fan of a full-dimensional polytopal set S ⊂ U trop(Q) containing
0 in the interior. A function φ : U trop(Q) → Q is a support function for Σ[S] if for each weak cone σ ∈ Σ[S]
there is some yσ ∈ (U∨)trop(Q) such that φ|σ = ⟨ · , yσ⟩. A support function φ is integral if each yσ may be
taken to lie in (U∨)trop(Z).

5.3 Duality for polyhedral sets and faces

Definition 68. Let S ⊂ U trop(Q). We define the polar of S to be

S◦ :=
{
y ∈ (U∨)trop(Q) : ⟨s, y⟩ ≥ −1 for all s ∈ S

}
.

More generally, for r ∈ Q≥0, we define the r-dual of S to be

S∨r :=
{
y ∈ (U∨)trop(Q) : ⟨s, y⟩ ≥ −r for all s ∈ S

}
.

(In particular, if r = 1, S∨r = S◦.) In the special case r = 0, we simply write S∨ for S∨0 . We define the
polar and r-dual of subsets of (U∨)trop(Q) analogously.
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Proposition 69. Let S ⊂ U trop(Q) and r ∈ Q≥0. Then

S∨r = convBL (S ∪ {0})∨r
.

Proof. First note that S ⊂ convBL (S ∪ {0}), so the containment convBL (S ∪ {0})∨r ⊂ S∨r is immediate.
Next, let y ∈ S∨r . That is, ⟨x, y⟩ ≥ −r for all x ∈ S. Also, ⟨0, y⟩ = 0 ≥ −r. Then {0} ∪ S ⊂ K(y, r).

Since K(y, r) is closed and broken line convex, this implies convBL (S ∪ {0}) ⊂ K(y, r). In other words,

y ∈ convBL (S ∪ {0})∨r
, and S∨r = convBL (S ∪ {0})∨r

.

Proposition 70. Let S ⊂ U trop(Q). Then for r > 0,

(S∨r )∨r = convBL (S ∪ {0}).

Proof. This is proved just like the classical version for polytopes in Qn. We follow the proof given in [Brø83,
Theorem 6.2].

By Lemma 48, a tropical half-space is broken line convex. The r-dual of a set is by definition an
intersection of closed tropical half-spaces, and the intersection of closed, broken line convex sets is closed
and broken line convex. So, (S∨r )∨r is closed and broken line convex. Moreover, if x ∈ S then ⟨x, y⟩ ≥ −r
for all y in S∨r by definition of S∨r . So S ⊂ (S∨r )∨r , and obviously {0} ⊂ (S∨r )∨r as well. That is, (S∨r )∨r

is a closed, broken line convex set containing S ∪ {0}, and (S∨r )∨r ⊃ convBL (S ∪ {0}).
Next observe that

y ∈ S∨r ⇐⇒ ⟨x, y⟩ ≥ −r for all x ∈ S ⇐⇒ S ⊂ K(y, r).

So,

(S∨r )∨r =
⋂

y∈S∨r

K(y, r) =
⋂

K(y,r)⊃S

K(y, r).

Now take a point z /∈ convBL (S ∪ {0}). There exists a supporting tropical half-spaceK(y, r′) of convBL (S ∪ {0})
with z /∈ K(y, r′). So,

min
{
⟨x, y⟩ : x ∈ convBL (S ∪ {0})

}
= −r′ > ⟨z, y⟩ .

Then there exists t ∈ Q>0 such that

min
{
⟨x, y⟩ : x ∈ convBL (S ∪ {0})

}
≥ −t > ⟨z, y⟩ .

Set u := r
t y. Then

min
{
⟨x, u⟩ : x ∈ convBL (S ∪ {0})

}
≥ −r > ⟨z, u⟩ .

So K(u, r) ⊃ S, which implies (S∨r )∨r ⊂ K(u, r). But z /∈ K(u, r), so z /∈ (S∨r )∨r . That is, z /∈
convBL (S ∪ {0}) implies z /∈ (S∨r )∨r . We conclude that

(S∨r )∨r = convBL (S ∪ {0}).

Lemma 71. Let x ∈ U trop(Q) be non-zero, and let r ∈ Q≥0. Then K(x, 0)∨r = Q≥0 · x.
Proof. First, y ∈ K(x, 0) if and only if ⟨x, y⟩ ≥ 0. For any λ ≥ 0, we have ⟨λx, y⟩ = λ ⟨x, y⟩, and Q≥0 · x ⊂
K(x, 0)∨ ⊂ K(x, 0)∨r .

On the other hand, if z ∈ K(x, 0)∨r , then ⟨z, y⟩ ≥ −r for all y ∈ K(x, 0). Suppose for some such y we
have 0 > ⟨z, y⟩ ≥ −r. Then for sufficiently large λ > 0, we will have ⟨z, λy⟩ < −r. But λy ∈ K(x, 0), so this
contradicts the assumption that z ∈ K(x, 0)∨r . We find that in fact K(x, 0)∨r = K(x, 0)∨. If z is not a non-
negative multiple of x, it will pair negatively with some y ∈ H(x, 0), so K(x, 0)∨r = K(x, 0)∨ = Q≥0 · x.
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Proposition 72. Let S ⊂ U trop(Q) and r ∈ Q≥0. Then S∨r ⊂ K(x, 0) if and only if Q≥0 · x ⊂
convBL ({0} ∪ S).

Proof. First observe that (K(x, 0)∨r )∨r = K(x, 0). This follows from Lemma 71. Next, Proposition 69

states that S∨r = convBL ({0} ∪ S)
∨r
. So, we have S∨r ⊂ K(x, 0) if and only if convBL ({0} ∪ S)

∨r ⊂
(K(x, 0)∨r )∨r , which holds if and only ifK(x, 0)∨r ⊂ convBL ({0} ∪ S). But Lemma 71 states thatK(x, 0)∨r =
Q≥0 · x.

Proposition 73. Let S ⊂ U trop(Q) be a cone. Then S∨r is also a cone. Specifically, if S = Cone(T ) then
S∨r = S∨ = Cone(T∨).

Proof. By definition, Cone(T ) = convBL(Q≥0 · T ). So,

S∨r = convBL (Q≥0 · T )∨r =
⋂

x∈Q≥0·T
K (x, r) =

⋂
λ∈Q≥0

⋂
t∈T

K (λt, r) = lim
λ→∞

⋂
t∈T

K (λt, r) .

The last equality follows from the fact that if λ1 ≤ λ2, then K(λ1t, r) ⊂ K(λ2t, r) for all t ∈ T . Later,

lim
λ→∞

⋂
t∈T

K (λt, r) =
⋂
t∈T

K (t, 0) = T∨ = Q≥0 · T∨ = convBL (Q≥0 · T∨) = Cone (T∨) .

Proposition 74. Let S and T be subsets of U trop(Q). Then

(S∨r ∩ T∨r ) = (S ∪ T )∨r .

Proof. Let y ∈ (U∨)trop(Q). Then

y ∈ (S∨r ∩ T∨r ) ⇐⇒ ⟨x, y⟩ ≥ −r for all x ∈ (S ∪ T ) ⇐⇒ y ∈ (S ∪ T )∨r .

Proposition 75. Let S and T be subsets of U trop(Q) both containing 0. Then

(S+ϑ T )
∨r ⊂ (S∨r ∩ T∨r ) ⊂ (S+ϑ T )

∨2r .

Proof. Since both S and T contain 0, we have that S ⊂ S+ϑ T and T ⊂ S+ϑ T . This implies that
S∨r ⊃ (S+ϑ T )

∨r and T∨r ⊃ (S+ϑ T )
∨r , showing the first containment.

Next, let y ∈ S∨r ∩ T∨r . For an element x ∈ S+ϑ T , there exist s ∈ S and t ∈ T such that x ∈ s+ϑ t.
Then

⟨x, y⟩ ≥ ⟨s, y⟩+ ⟨t, y⟩ ≥ −2r.

So, y ∈ (S+ϑ T )
∨2r .

We obtain the following statement as a corollary:

Corollary 76. Let S and T be subsets of U trop(Q) both containing 0. Then

(S∨ ∩ T∨) = (S+ϑ T )
∨
.

Proposition 77. Let S and T be closed cones in U trop(Q). Then

(S ∩ T )∨r = S∨r +ϑ T
∨r .
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Proof. Since S ∩ T ⊆ S and S ∩ T ⊆ T we have that (S ∩ T )∨r ⊇ S∨r ∪ T∨r . Consequently,

convBL (S ∩ T )∨r ⊇ convBL (S
∨r ∪ T∨r ) .

Then

(S ∩ T )∨r = convBL (S ∩ T )∨r ⊇ convBL (S
∨r ∪ T∨r ) = S∨r +ϑ T

∨r .

Here, we use Proposition 69 together with the fact that S and T are closed cones for the first equality. For
the second, Proposition 73 implies S∨r = S∨ and T∨r = T∨ are closed cones as well, at which point we
apply Proposition 33.

Conversely, since S∨r ⊆ S∨r ∪ T∨r , we have (S∨r )
∨r ⊇ (S∨r ∪ T∨r )

∨r . Then Proposition 70 implies the
containment

S = convBL (S ∪ {0}) ⊇ (S∨r ∪ T∨r )
∨r .

Using an analogous argument, we have that T ⊇ (S∨r ∪ T∨r )
∨r . So, (S ∩ T ) ⊇ (S∨r ∪ T∨r )

∨r , and in turn

(S ∩ T )∨r ⊆
(
(S∨r ∪ T∨r )

∨r
)∨r

. Using once again Propositions 70, 73 and 33, we have that

(S ∩ T )∨r ⊆
(
(S∨r ∪ T∨r )

∨r

)∨r

= convBL (S∨r ∪ T∨r ∪ {0})
= convBL (S

∨r ∪ T∨r )

= S∨r +ϑ T
∨r .

This concludes the proof.

Proposition 78. Let S and T be closed broken line convex sets both containing 0. Then

convBL (S
◦ ∪ T ◦) = (S ∩ T )◦ .

Proof. Observe that by Proposition 70 we have that

convBL (S
◦ ∪ T ◦) = (S◦ ∪ T ◦)◦

◦
=
(
S◦◦ ∩ T ◦◦)◦ =

(
convBL (S ∪ {0}) ∩ convBL (T ∪ {0})

)◦
= (S ∩ T )◦ .

Definition 79. A broken line convex set S ⊂ U trop(Q) is strongly broken line convex if no doubly infinite
broken line has support contained in S.

Definition 80. Let S ⊂ U trop(Q), let x be a non-zero element of U trop(Q), and fix a seed s. We say that
S contains the asymptotic direction x if there exists a sequence s0, s1, s2, . . . of elements of S such that

lim
n→∞

∥rs(sn)∥ = ∞ and lim
n→∞

rs(sn)

∥rs(sn)∥
= rs(x).

Proposition 81. S contains the asymptotic direction x if and only if S∨r ⊂ K(x, 0).

Proof. We first show that if convBL ({0} ∪ S) contains the asymptotic direction x, then so does S. If we are
given a sequence s0, s1, s2, . . . in convBL ({0} ∪ S), we can obtain a sequence s0, s1, s2, . . . in convBL ({0} ∪ S)
with only small perturbations of each term. That is, for any ϵ > 0, we can ensure that each sn satisfies
∥rs(sn)− rs(sn)∥ < ϵ. Clearly, if

lim
n→∞

∥rs(sn)∥ = ∞ and lim
n→∞

rs(sn)

∥rs(sn)∥
= rs(x),

then

lim
n→∞

∥rs(sn)∥ = ∞ and lim
n→∞

rs(sn)

∥rs(sn)∥
= rs(x)
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as well. Taking a subsequence if necessary, we may assume each sn is non-zero. Now we use Proposition 33
to conclude that

convBL ({0} ∪ S) =
⋃

a∈[0,1]

aS.

Take each sn to be in anS. Since we have assumed sn to be non-zero, an ∈ (0, 1]. Now let s′n = 1
an
sn. Then

we also have

lim
n→∞

∥rs(s′n)∥ = ∞ and lim
n→∞

rs(s
′
n)

∥rs(s′n)∥
= rs(x),

so S contains the asymptotic direction x if convBL ({0} ∪ S) does.
By Proposition 72, S∨r ⊂ K(x, 0) if and only if Q≥0 · x ⊂ convBL ({0} ∪ S). But Q≥0 · x clearly contains

the asymptotic direction x. So if S∨r ⊂ K(x, 0), then S contains the asymptotic direction x.
Similarly, if S contains the asymptotic direction x, then so does convBL ({0} ∪ S). Then convBL ({0} ∪ S)

is a closed, broken line convex set containing both 0 and a sequence of points approaching the ray Q≥0 · x
at infinity. It must contain Q≥0 · x. Applying Proposition 72 again, we see that S∨r ⊂ K(x, 0).

Proposition 82. Let S ⊂ U trop(Q) be broken line convex. Then S∨r ⊂ (U∨)trop(Q) is full-dimensional if
and only if S is strongly broken line convex.

Proof. Suppose S is not strongly broken line convex. Then there exists a doubly infinite broken line γ :
Q → U trop(Q) with support contained in S. We will choose a particular seed s to identify U trop(Q) and
(U∨)trop(Q) with dual Q-vector spaces V and V ∗ via the maps rs and r∨s as in Notation 10. Specifically,
we choose s such that the support of γ intersects the DU∨

s chamber associated to s at a non-bending point
rs(x0) of rs(supp(γ)). Reparametrizing γ if necessary, we can take x0 = γ(0). Now define

η− : Q≤0 → V

t 7→ rs(γ(t))

and

η+ : Q≤0 → V

t 7→ rs(γ(−t)).

Since rs(x0) is a non-bending point, for sufficiently small ϵ > 0, we have

η̇−(−ϵ) = −η̇+(−ϵ). (24)

Write v± := limt→−∞ η̇±(t).
As η± has only finitely many bends, there exists some R > 0 such that for all t ∈ Q≤0, η±(t) is contained

in B(R, tv±), the ball of radius R centered at tv±. That is, for all t ∈ Q≤0, we can write η±(t) = tv± + b for
some b ∈ B(R, 0). Now suppose ⟨rs(−v±), y⟩ < 0 for some y ∈ (U∨)trop(Q). Then

lim
t→−∞

⟨rs(tv±), y⟩ = −∞. (25)

The tropically linear function ⟨ · , y⟩ : U trop(Q) → Q defines a piecewise linear function on V by(
r−1
s

)∗ ⟨ · , y⟩, and this piecewise linear function has the form(
r−1
s

)∗ ⟨ · , y⟩ = min
ℓ∈L

{ℓ( · )}

for some finite set L of linear functions on V . Then〈
r−1
s (η±(t)) , y

〉
= min

ℓ∈L
{ℓ(η±(t))} = min

ℓ∈L
{ℓ(tv±) + ℓ(b)}
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for some b ∈ B(R, 0). However, ℓ|B(R,0) is bounded for all ℓ ∈ L, while limt→−∞ minℓ∈L ℓ(tv±) = −∞ by

(25). So, limt→−∞
〈
r−1
s (η±(t)) , y

〉
= −∞ as well, and y /∈ supp(γ)∨r . In other words, if y ∈ supp(γ)∨r ,

then
〈
r−1
s (v±), y

〉
≥ 0.

Next, 〈
r−1
s (v±), y

〉
= ϑtrop

r−1
s (v±)

(y) = (r∨s (y))
(
ϑv±,rs(x0)

)
= min

{
m(r∨s (y)) : zm is a non-zero summand of ϑv±,rs(x0)

}
≤ (−η̇±(−ϵ)) (r∨s (y)) for small ϵ > 0.

That is, if y ∈ supp(γ)∨r , then 0 ≤
〈
r−1
s (v±), y

〉
≤ (−η̇±(−ϵ)) (r∨s (y)) for small ϵ > 0. Then (24) implies

r∨s (y) ∈ η̇±(−ϵ)⊥, and supp(γ)∨r is not full-dimensional. But supp(γ) ⊂ S, so S∨r ⊂ supp(γ)∨r , and S∨r is
also not full-dimensional.

Now suppose S∨r is not full-dimensional. Say d := dim(S∨r ). Choose a seed s such that the chamber σs
of DU

s associated to the seed s intersects r∨s (S
∨r ) in a d-dimensional subset. Note that r∨s (S

∨r ) is contained
in some hyperplane through the origin, say m⊥ for some integral m. Let x+ and x− to be the points of
U trop(Z) with (

r∨s
−1
)∗

⟨x±, · ⟩
∣∣∣
σs

= ±m( · ). (26)

Then clearly

S∨r ∩ (r∨s )
−1(σs) ⊂ (H(x+, 0) ∩H(x−, 0)) .

Moreover, since S∨r is broken line convex, Lemma 59 implies that in fact

S∨r ⊂ (H(x+, 0) ∩H(x−, 0)) . (27)

Note that (26) implies there is a pair of broken lines η−, η+ in V with initial exponent vectors rs(x−), rs(x+)
and final exponent vectors −m,+m sharing the same basepoint. This pair of broken lines indicates that
the product ϑx−ϑx+ has non-zero constant (ϑ0) term. Explicitly, we can dilate the supports of the pair of
broken lines to bring the basepoint arbitrarily close to the origin. Then this pair of broken lines precisely
describes a contribution to the product ϑx−ϑx+

as described in [GHKK18, Definition-Lemma 6.2]. However,
by [GHKK18, Proposition 6.4.(3)], we can compute the structure constant α0

x+,x− of this multiplication
using any basepoint near the origin. In particular, we may choose a basepoint rs(xb) such that λxb is in
the relative interior of S for some λ > 0. Then we obtain a pair of broken lines in V with basepoint rs(xb),
initial exponent vectors rs(x−) and rs(x+), and final exponent vectors summing to 0. Dilating the supports
of these broken lines by λ, we obtain a such a pair with basepoint in the relative interior of S. We may
reverse the direction of one of the broken lines to obtain a doubly infinite broken line γ passing through the
previous basepoint and having

lim
t→±∞

γ̇(t) = −rs(x±). (28)

Next, (27) and Proposition 81 together imply S contains the asymptotic directions x+ and x−. Now
suppose supp(γ) ̸⊂ rs(S). Then at some point γ must leave rs(S). As γ passes through the relative interior
of rs(S), Lemma 59 prevents γ from simply entering and remaining in the boundary of the closure of rs(S)
in the event that rs(S) is not closed. Then points of γ must eventually be a positive distance from rs(S).
However, since S contains the asymptotic directions x±, (28) implies this positive distance is bounded. Then
as argued in Lemma 59, we may take a small perturbation γ′ of a segment of γ, this time adding a small
contribution to the velocity at λxb so that the first bend for γ′ after leaving rs(S) is slightly closer to rs(S)
the corresponding bend of γ. Keeping all wall contributions the same (up to a multiplicative constant to
maintain integrality of exponent vectors) as in Lemma 59, we obtain a broken line segment which must
eventually re-enter rs(S) as the direction after the last bend will have a small contribution directed toward
rs(S), much like the situation illustrated in Figure 4. This contradicts the assumption that S is broken line
convex. As a result, we conclude that r−1

s (supp(γ)) is contained in S and so S is not strongly broken line
convex.
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We have treated r-duals thus far so that we can apply our results equally well in the two main cases of
interest: r = 0 and r = 1. For the remainder of this subsection, we will focus on questions that are primarily
interesting for polar duality. With this in mind, we will return to the simpler ◦ notation and comment that
our arguments may easily be adapted to treat the more general r > 0 case.

Proposition 83. Let S ⊂ U trop(Q) be broken line convex. Then S◦ ⊂ (U∨)trop(Q) is bounded if and only
if S is full-dimensional and contains the origin in its interior.

Proof. Suppose S is full-dimensional and contains the origin in its interior. Choose a seed s to identify
U trop(Q) and (U∨)trop(Q) with dual Q-vector spaces V and V ∗ via rs and r∨s as in Notation 10. Then rs(S)
contains the ball B(R, 0) for some sufficiently small R > 0. For any x ∈ U trop(Q), we have(

r∨s
−1
)∗

⟨x, · ⟩ = min
ℓ∈L

{ℓ( · )}

for some finite set of linear maps L containing rs(x). Then

r∨s (K(x, 1)) ⊂ K(rs(x), 1),

where K(rs(x), 1) := {v ∈ V ∗ : (rs(x)) (v) ≥ −1}.
Now note that the polar of B(R, 0) ⊂ V is B

(
1
R , 0

)
⊂ V ∗. Then we have

r∨s (S◦) = r∨s

(⋂
s∈S

K(s, 1)

)
⊂ r∨s

 ⋂
rs(s)∈B(R,0)

K(s, 1)

 ⊂ B(R, 0)◦ = B

(
1

R
, 0

)
,

and S◦ is bounded.
Next, if S is not full-dimensional, S◦ is not strongly convex by Proposition 82, and a fortiori not

bounded. If S does not contain the origin in the interior, then it is contained in K(y, 0) for some non-
zero y ∈ (U∨)trop(Q). So Q≥0 · y ∈ S◦ and S◦ is not bounded.

We have the following immediate corollary:

Corollary 84. If S is a bounded, full-dimensional set containing the origin in its interior, then so is S◦.

Definition 85. Let S ⊂ U trop(Q). We say S is integral if S = convBL (A) for some finite subset A of
U trop(Z). We define integral subsets of (U∨)trop(Q) analogously, and we say S is reflexive if 0 ∈ S and both
S and S◦ are integral.

Remark 86.

Definition 87. Let S ⊂ U trop(Q) be a full-dimensional polytopal subset and containing 0 in the interior.
We define the dual of a face F of S to be

qF := {y ∈ S◦ : ⟨x, y⟩ = −1 for all x ∈ F} .

Note that for the empty face ∅, we have q∅ = S◦.

Proposition 88. Let S ⊂ U trop(Q) be a full-dimensional polytopal subset and containing 0 in the interior,

and let F be a proper face of S. Then qF is a proper face of S◦. Precisely, if x is in the relative interior

of F , then qF = S◦ ∩ H(x, 1). Moreover, if F ′ ⊊ F then qF ⊊ qF ′ and
qqF = F . This gives a bijective,

containment-reversing correspondence between proper faces of S and S◦.

Proof. For any x ∈ F , define Fx := S◦ ∩H(x, 1). Observe that

qF =
⋂
x∈F

Fx,
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and qF ⊂ Fx for all x ∈ F . Now suppose x is in the relative interior of F . Then by Definition 56 Item 3 and
Proposition 57, a supporting tropical hyperplane H(y, r) for S which contains x must in fact contain F . So

if y ∈ Fx, then F ⊂ H(y, 1), and y ∈ qF . That is, qF = Fx for any x in the relative interior of F .
Next, we claim that every proper face of S◦ is the dual of a face of S. By definition, every face of S◦

is of the form S◦ ∩H(x, r) for some x ∈ U trop(Q), and using Remark 47 we can choose x such that r = 1.
But such an x is necessarily in the boundary of S since (S◦)◦ = S. Every boundary point is contained in
some face, and moreover by Proposition 57, contained in the relative interior of a face. Then the previous
argument implies that every proper face of S◦ is the dual of a face of S.

It follows immediately from the definition of the dual of a face that F ′ ⊂ F implies qF ⊂ qF ′. If moreover
F ′ ⊊ F , then there is some y′ ∈ (U∨)trop(Q) and r′ ∈ Q>0 with F ′ = S ∩H(y′, r′) and F ⊂ S ⊂ K(y′, r′).
As argued above, we may take r′ = 1 and y′ ∈ S◦. Then y′ ∈ qF ′ \ qF , so qF ⊊ qF ′.

Finally, S and S◦ play completely interchangeable roles here. So, every proper face of S is the dual of a

proper face of S◦ as well. We have automatically that F ⊂ qqF . Suppose F ⊊ qqF . Since proper containments

are reversed by duality of faces, we must also have
qqqF ⊊ qF . But this violates the automatic containment

qF ⊂
qqqF . We conclude that F =

qqF .

See Figure 6 for an example of this duality for face pseudo-complexes.

1
+
z e ∗

2 −
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1 + z−e∗1

v1

v2

F

F ′

1
+
z
e1
+
e2

1 + ze2

1 + ze1
qv1

qv2

qF

qF ′

Figure 6: On the left, the bigon S of Figure 3 together with its face pseudo-complex. On
the right, the dual face pseudo-complex of S◦, which is also a bigon.

It will come in handy in §6 to study duality for sets cut out by functions on U trop(Q).

Proposition 89. Consider a set T ⊂ (U∨)trop(Q), and define

φ : U trop(Q) → Q
x 7→ min

y∈T
{⟨x, y⟩} .

Then

Ξφ,1 =
{
y ∈ (U∨)trop(Q) : ⟨x, y⟩ ≥ φ(x) for all x ∈ U trop(Q)

}◦
= T ◦.

Proof. For the first equality, we compute:

Ξφ,1
◦ :=

{
y ∈ (U∨)trop(Q) : ⟨x, y⟩ ≥ −1 for all x ∈ Ξφ,1

}
=
{
y ∈ (U∨)trop(Q) : ⟨x, y⟩ ≥ −1 for all x ∈ ∂Ξφ,1

}
=
{
y ∈ (U∨)trop(Q) : ⟨x, y⟩ ≥ φ(x) for all x ∈ ∂Ξφ,1

}
=
{
y ∈ (U∨)trop(Q) : ⟨λx, y⟩ ≥ φ(λx) for all x ∈ ∂Ξφ,1, λ ∈ Q≥0

}
=
{
y ∈ (U∨)trop(Q) : ⟨x, y⟩ ≥ φ(x) for all x ∈ U trop(Q)

}
.

(29)
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But Ξφ,1 is a closed broken line convex set containing 0, so Proposition 70 implies the first equality.
For the second equality, suppose that x ∈ T ◦. Then ⟨x, y⟩ ≥ −1 for all y ∈ T and thus

φ(x) = min
y′∈T

{⟨x, y′⟩} ≥ −1.

So, x ∈ Ξφ,1 and this implies that T ◦ ⊆ Ξφ,1. Conversely, suppose y ∈ T . Then for all x ∈ U trop(Q),

⟨x, y⟩ ≥ min
y′∈T

{⟨x, y′⟩} = φ(x).

So, y ∈ Ξφ,1
◦ by Equation (29). We have then T ⊆ Ξφ,1

◦ and consequently T ◦ ⊇ Ξφ,1.

Proposition 90. Let S ⊂ U trop(Q) be a full-dimensional polytopal set containing 0 in the interior, and let
φ : U trop(Q) → Q be a support function for Σ[S] which is convex with respect to broken lines. Then Ξφ,1 ⊂
U trop(Q) is a full-dimensional polyhedral set containing 0 in the interior. Meanwhile, Ξφ,1

◦ ⊂ (U∨)trop(Q)
is bounded and given by

Ξφ,1
◦ = convBL

{0} ∪
⋃

σ∈Σ[S]

{yσ}

 ,

where yσ satisfies φ|σ = ⟨ · , yσ⟩.

Proof. Since φ is a support function for Σ[S], for all σ ∈ Σ[S] we have φ|σ = ⟨ · , yσ⟩ for some tropical point
yσ ∈ (U∨)trop(Q), and

Ξφ,1 ∩ σ = {x ∈ σ : ⟨x, yσ⟩ ≥ −1} = K(yσ, 1) ∩ σ.

Next, Ξφ,1 is broken line convex by Proposition 41, and given by

Ξφ,1 =
⋂

σ∈Σ[S]

K(yσ, 1).

This shows that Ξφ,1 is polyhedral. As the indexing set of the intersection is finite and each K(yσ, 1) is a
full-dimensional set containing 0 in the interior, so is Ξφ,1. By Proposition 83, Ξφ,1

◦ is bounded. Moreover,
K(yσ, 1) = {yσ}◦, so using Proposition 74 and Proposition 70 we see that

Ξφ,1 =
⋂

σ∈Σ[S]

{yσ}◦ =

 ⋃
σ∈Σ[S]

{yσ}

◦

and

Ξφ,1
◦ =

 ⋃
σ∈Σ[S]

{yσ}

◦◦

= convBL

{0} ∪
⋃

σ∈Σ[S]

{yσ}

 .

5.4 Half-space and vertex representations

Proposition 91. Let A ⊂ U trop(Q) be a finite collection of points and let S = convBL(A). Then necessarily
V (S) ⊂ A and S = convBL(V (S)).

Proof. Let v ∈ A, but v /∈ convBL(A \ {v}) =: Sv. Then there is some supporting tropical half-space K(y, r)
for Sv with x /∈ K(y, r). For all r′ > r, we have that Sv is contained in the interior of K(y, r′). Moreover,
for some such r′, we have that v ∈ H(y, r′).
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Now let s ∈ S. By Proposition 33,

s ∈
∑

ϑ
x∈A

axx

for some collection of non-negative ax which sum to 1. Next, Proposition 35 implies

⟨s, y⟩ ≥
∑
x∈A

ax ⟨x, y⟩

≥ −avr′ −
∑

x∈A\{v}
axr

≥ −r′,

with equality if and only if av = 1, ax ̸=v = 0. That is, if s ∈ S is in H(y, r′), then s = v. Thus v is a vertex
of S.

Proposition 92. Every polytopal set S ⊂ U trop(Q) is the broken line convex hull of a finite set.

Proof. This follows directly from the usual convex geometry statement by choosing a seed– the only subtlety
being that the finite set of points obtained in this way will generally not be minimal.

Let d = dim(U). Then a choice of seed identifies U trop(Q) with Qd, and S with a polytope PS in Qd.
Specifically, each tropical half-space defining S is identified with an intersection of a finite number of half-
spaces in Qd. Thus PS is the intersection of finitely many half-spaces in Qd; it is a rational polyhedron, and
in fact a polytope as it is bounded. Then PS is the (usual) convex hull of a finite collection of points in Qd,
namely the vertices of PS in the usual convex geometry sense. Denote by A the collection of tropical points
associated to this set of vertices of PS . The equality S = convBL(A) is clear.

We can combine Propositions 91 and 92 to obtain

Corollary 93. If S ⊂ U trop(Q) is polytopal, then V (S) is finite and S = convBL(V (S)).

So, we have defined polytopal sets using a broken line convex geometry version of the “half-space repre-
sentation”. Corollary 93 indicates that a polytopal set always has a broken line convex geometry version of
the “vertex representation” as well. We may also perform this translation in the opposite direction:

Proposition 94. Let A ⊂ U trop(Q) be a finite set such that S := convBL(A) is full-dimensional and contains
the origin. Then S is polytopal.

Proof. First note that S◦ is given by

S◦ =
⋂

v∈V (S)

K(v, 1).

By Proposition 91 V (S) is a finite set contained in A, and so S◦ is polyhedral. Using Corollary 84, we see
that S◦ is in fact polytopal. But then Corollary 93 implies V (S◦) is finite and S◦ = convBL(V (S◦)). So, we
have

(S◦)◦ =
⋂

y∈V (S◦)

K(y, 1).

But since S is a broken line convex set containing the origin, we have (S◦)◦ = S by Proposition 70.

6 Broken line convex geometry of Batyrev-Borisov duality

Definition 95. Let S ⊂ U trop(Q) be reflexive, let V (S) be the vertices of S, and consider a decomposition
of V (S) as a disjoint union V (S) = ∪i∈IVi(S). Write

Ti :=
⋂
j∈I

⋂
v∈Vj(S)

K(v, δij).
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We call the decomposition of V (S) a Batyrev-Borisov partition if for each i ∈ I, the function φi : U
trop(Q) →

Q defined by

φi := min
y∈Ti

{⟨ · , y⟩}

is an integral support function for Σ[S] with

φi(v) =

{
−1 for v ∈ Vi(S)

0 for v ∈ V (S) \ Vi(S).
.

In the toric case, what we call a Batyrev-Borisov partition is referred to as a nef-partition. (See [Bor93,
Definition 2.5].) This is because the partition of V (S) defines a decomposition of −KXS◦ as a sum of
nef Cartier divisors −KXS◦ =

∑
i∈I Di. See [Bor93] for details. We do not use this terminology here

(or similar terminology rooted in algebraic geometry) since we do not yet know what analogous algebro-
geometric statement holds in the cluster setting. That said, a careful comparison of Definition 95 and
[Bor93, Definition 2.5] will reveal a few subtle differences. First, Borisov does not make reference to the set
we call Ti in his definition. Instead, if we rephrase his definition of nef-partition using the conventions of
this paper, he asks for the existence of a collection of convex integral support functions {φi : i ∈ I} for Σ[S]
with

φi(v) =

{
−1 for v ∈ Vi(S)

0 for v ∈ V (S) \ Vi(S).

In the toric setting, this φi is precisely the support function of the ith summand of the decomposition
−KXS◦ =

∑
i∈I Di, and φi is convex if and only if Di is nef. Borisov later uses φi to define the set Ti,

interpreted as the polytope of the nef summand Di of −KXS◦ . (See [Bor93, Definition 2.9].) In the broken
line convex geometry setting however, the values of φi at vertices of S may not fully determine φi and we
are forced to be a bit more explicit when defining this function. For instance, if we take the trivial partition
V (S) = V1(S) for S the bigon on the left in Figure 6, both qF and qF ′ pair to −1 with both v1 and v2. Either
defines an integral support function for Σ[S] which is convex with respect to broken lines. However, the φ we

wish to consider is given by pairing with qF on σF and pairing with qF ′ on σF ′ . Of the three possibilities, only
this φ of these can be used to recover T1 = S◦ as in [Bor93, Definition 2.9]. Finally, there is a sign difference
between our φi and that appearing in [Bor93, Definition 2.5]. This is due to opposite inequality conventions
for convex functions. The convention we have chosen matches that of [CLS11] and [GHKK18]. The change
is more substantive here than in the toric case as negation isn’t a meaningful operation on U trop(Q).

While our definition of Ti looks somewhat different from [Bor93, Definition 2.9], it is easy to recover
Borisov’s description:

Proposition 96. The set Ti is precisely

Ti =
{
y ∈ (U∨)trop(Q) : ⟨x, y⟩ ≥ φi(x) for all x ∈ U trop(Q)

}
.

Proof. First suppose y ∈ Ti. Then for all x ∈ U trop(Q),

⟨x, y⟩ ≥ min
y′∈Ti

{⟨x, y′⟩} = φi(x).

Next, suppose y ̸∈ Ti. Then for some v ∈ V (S), say with v in the set Vj(S), we have ⟨v, y⟩ < −δij . But
φi(v) = −δij .

In fact, considering the above description of Ti as its definition (as in [Bor93, Definition 2.9]), Borisov
obtained as a corollary that the function φi is precisely miny∈Ti {⟨ · , y⟩}. (See [Bor93, Corollary 2.12].) The
equality φi = miny∈Ti {⟨ · , y⟩} fails if φi is not convex, i.e. if Di is not nef. So, in the end our description
aligns quite closely with Borisov’s. We simply avoid the problem that the most näıve generalization of his
definition of φi to the broken line convex geometry setting may not be uniquely defined.
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For the remainder of the section we fix a reflexive subset S ⊂ U trop(Q) and a Batyrev-Borisov partition
V (S) = ∪i∈IVi(S) as in Definition 95. We will now use the following notation:

Si := convBL ({0} ∪ Vi(S)) . (30)

Note that

S = convBL(Si : i ∈ I). (31)

We additionally define

T := convBL(Ti : i ∈ I), (32)

S′ :=
∑

ϑ
i∈I

Si, (33)

and

T ′ :=
∑

ϑ
i∈I

Ti. (34)

Lemma 97. T is integral.

Proof. For every i ∈ I, by Proposition 96 and Equation (29) we have that

Ti =
{
y ∈ (U∨)trop(Q) : ⟨x, y⟩ ≥ φi(x) for all x ∈ U trop(Q)

}
= Ξφi,1

◦.

Since φi is an integral support function on Σ[S] by Proposition 90 we have that

Ξφi,1
◦ = convBL

{0} ∪
⋃

σ∈Σ[S]

{yi,σ}

 ,

where yi,σ satisfies φi|σ = ⟨ · , yi,σ⟩. So, Ti is integral and generated by a finite number of points because it
is bounded. Finally, we have that

T = convBL ({0} ∪ {yi,σ : i ∈ I and σ ∈ Σ[S]}) .

Proposition 98. The sets Si and Tj satisfy

min {⟨x, y⟩ : x ∈ Si, y ∈ Tj} = −δij .

Note that this recovers [Bor93, Corollary 2.12] in the toric setting.

Proof. If x ∈ Si, Proposition 33 implies that for some collection of non-negative av summing to 1, with
v ∈ {0} ∪ Vi(S), we have

x ∈
∑

ϑ
v

avv.

Then Proposition 35 implies that for all y ∈ (U∨)trop(Q),

⟨x, y⟩ ≥
∑
v

av ⟨v, y⟩ .

In particular, if

y ∈ Tj =
⋂
i∈I

⋂
v∈Vi(S)

K(v, δij),
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then

⟨x, y⟩ ≥
∑
v

−avδij = −δij .

Finally, if v ∈ Vi(S) ⊂ Si, then

min
y∈Tj

{⟨v, y⟩} = φj(v) = −δij .

The next lemma follows almost immediately from definitions, but it will be useful as we discuss Batyrev-
Borisov partitions from the perspective of dual face pseudo-complexes.

Lemma 99. For each F ∈ FS, we have

φi|σF
= ⟨ · , yi,F ⟩

for some integral

yi,F ∈
⋂
j∈I

⋂
v∈Vj(S)∩F

H(v, δij).

Moreover, yi,F ∈ S◦.

Proof. Only the fact that yi,F ∈ S◦ needs proof. This follows from the following two simple observations.
First, for all x ∈ U trop(Q), ⟨x, yi,F ⟩ ≥ φi(x). Next, if x ∈ S, φi(x) ≥ −1.

Lemma 100. Let F be a face of S. Then Fi := F ∩ Si is a face of S as well.

Proof. If Fi = F or Fi = ∅, there is nothing to do. So assume ∅ ̸= Fi ⊊ F . Now consider the face F , and
let yi,F be as in Lemma 99. Since Fi ̸= ∅, some v ∈ ∂F must be in Vi(S). Then ⟨v, yi,F ⟩ = φi(v) = −1, and
yi,F ∈ ∂S◦. It follows that H(yi,F , 1) is a supporting tropical hyperplane for S. Write F ′ := H(yi,F , 1) ∩ S,
and note that Fi = F ∩ F ′.

Since Fi ̸= F , there is some v′ ∈ V (S) ∩ F which is not in Vi(S). Then ⟨v′, yi,F ⟩ > −1, and v′ /∈ F ′.
That is, F ∩ F ′ ⊊ F . By Proposition 57, F ∩ F ′ ⊂ ∂F , and this intersection decomposes as a union of faces
– for some B ⊂ FS ,

Fi = F ∩ F ′ =
⋃

F ′′∈B
F ′′.

However, by Proposition 54, F ∩ Si is weakly convex. Then Lemma 59 implies it is in fact a single face.

Proposition 101. V (S) = ∪i∈IVi(S) is a Batyrev-Borisov partition if and only if for each i ∈ I and each
F ∈ FS, there is a G ∈ FTi

such that

1. ⟨x, y⟩ ≥ ⟨x, yG⟩ for all x ∈ F , y ∈ Ti, and yG ∈ G,

2. ⟨v, yG⟩ = −δij for all v ∈ F ∩ Vj(S) and yG ∈ G,

3. and G ∩ (U∨)trop(Z) ̸= ∅.

Proof. First suppose we are given a Batyrev-Borisov partition. Then for each F ∈ FS , we have φi|σF
=

⟨ · , yi,F ⟩ for some integral yi,F . Since by definition φi := miny∈Ti
{⟨ · , y⟩}, yi,F must lie in a face G of Ti.

Otherwise, for some x ∈ F and a ∈ Q≥0, we would have yi,F ∈ H(x, a), but Ti ̸⊂ K(x, a), contradicting
the assumption that ⟨x, yi,F ⟩ = miny∈Ti

{⟨x, y⟩}. Item 3 is satisfied for this face G since yi,F is integral.
Next, it’s clear that if we fix x, ⟨x, y⟩ ≥ ⟨x, yG⟩ = −a for all y ∈ Ti and yG ∈ G. Furthermore, if the
inequality holds as we vary over x ∈ F as well (i.e., if item 1 holds), then the we would immediately have
⟨v, yG⟩ = ⟨v, yi,F ⟩ = φi(v) = −δij for all v ∈ F ∩ Vj(S) and yG ∈ G. That is, item 1 implies item 2.
However, so far we just know that for each fixed x ∈ F there is such a face G containing yi,F . We take the
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intersection of these faces. By Proposition 57, this decomposes as a union of faces, and there is a face in this
decomposition which contains yi,F , establishing the first direction of the claim.

Now suppose for each i ∈ I and each F ∈ FS , there is a G ∈ FTi
satisfying items 1, 2, and 3. Define φi

by

φi|σF
= ⟨ · , yG⟩

for yG and integral point in G. This φi is automatically an integral support function for Σ[S]. Moreover, if
λx ∈ σF , we have

⟨λx, y⟩ = λ ⟨x, y⟩ ≥ λ ⟨x, yG⟩ = ⟨λx, yG⟩

for all y ∈ Ti. That is, φi = miny∈Ti
{⟨ · , y⟩}. Finally, item 2 immediately implies φi(v) = −δij(v) for

v ∈ Vj(S). V (S) = ∪i∈IVi(S) is a Batyrev-Borisov partition.

Corollary 102. The function φ : U trop(Q) → Q defined by

φ := min
y∈T ′

{⟨ · , y⟩}

satisfies φ =
∑

i∈I φi.

Proof. Recall Lemma 99. Let x ∈ σF . By Theorem 9, there is some summand ϑyF
of
∏

i∈I ϑyi,F
such that

⟨x, yF ⟩ =
∑

i∈I ⟨x, yi,F ⟩. Using Proposition 101, we see that each yi,F may be taken in Ti, in which case
yF ∈ T ′. As

φi(x) := min
y∈Ti

⟨x, y⟩ = ⟨x, yi,F ⟩ ,

we must have

φ(x) := min
y∈T ′

⟨x, y⟩ = ⟨x, yF ⟩ =
∑
i∈I

⟨x, yi,F ⟩ =
∑
i∈I

φi(x).

Lemma 103. Define Ri := Si ∪
⋃

j ̸=i Cone(Sj). Then Ti = Ri
◦.

Proof. First suppose y ∈ Ti. Then for x ∈ Si, we have ⟨x, y⟩ ≥ φi(x) ≥ −1. Meanwhile, for x ∈ Cone(Sj ̸=i),
we have ⟨x, y⟩ ≥ φi(x) = 0 ≥ −1. So, for x ∈ Ri, we find ⟨x, y⟩ ≥ −1, and y ∈ Ri

◦.
Now suppose y ∈ Ri

◦.

Ri
◦ =

Si ∪
⋃
j ̸=i

Cone(Sj)

◦

= Si
◦ ∩

⋂
j ̸=i

Cone(Sj)
◦

So, ⟨x, y⟩ ≥ −1 for all x ∈ Si. In particular, ⟨v, y⟩ ≥ −1 for all v ∈ Vi(S). That is, y ∈ K(v, 1) for all
v ∈ Vi(S). Similarly, ⟨x, y⟩ ≥ −1 for all x ∈ Cone(Sj), j ̸= i. If x ∈ Cone(Sj), then λx ∈ Cone(Sj) for all
λ ∈ Q≥0. So, ⟨λx, y⟩ = λ ⟨x, y⟩ ≥ −1 for all λ ∈ Q≥0, x ∈ Cone(Sj). Taking λ to ∞, we conclude that
⟨x, y⟩ ≥ 0 for all x ∈ Cone(Sj). In particular, ⟨v, y⟩ ≥ 0 for v ∈ Vj(S). That is, y ∈ K(v, 0) for all v ∈ Vj(S),
j ̸= i. In other words,

y ∈
⋂
j∈I

⋂
v∈Vj(S)

K(v, δij) =: Ti.

Corollary 104. Ti ∩ Tj = {0} for i ̸= j.
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Proof. We have

Ti ∩ Tj = Ri
◦ ∩Rj

◦

= (Ri ∪Rj)
◦

=

(⋃
k

Cone(Sk)

)◦

=

(
convBL

(⋃
k

Cone(Sk)

))◦

=
(
U trop(Q)

)◦
= {0} .

Lemma 105. S ⊆ Ξφ,1.

Proof. Let v ∈ V (S) a vertex of S. Then, there exists an i ∈ I such that v ∈ Vi(S) and by Corollary 102 we
have that

φ(v) =
∑
j∈I

φj(v) =
∑
j∈I

−δij = −1.

So, v ∈ Ξφ,1. Since S = convBL(V (S)) and Ξφ,1 is a broken line convex set containing V (S), we find S ⊆ Ξφ,1

as claimed.

Example 106. Consider the singleton partition of V (S), for S the bigon Figure 3. This is a Batyrev-Borisov
partition.

v1

v2

F

F ′

H(v1, 1)

H(v2, 0)

(−1,−1)
(1, 0)

(−2,−1)

(1, 1)

H(v1, 0)

H(v2, 1)

Figure 7: For the bigon S of Figure 3, label the vertices v1 and v2 as shown on the left and
set Vi(S) = {vi}. The support functions φ1 and φ2 are given by φ1|σF

= ⟨ · , (−1,−1)⟩,
φ1|σF ′ = ⟨ · , (1, 0)⟩, φ2|σF

= ⟨ · , (−2,−1)⟩, and φ2|σF ′ = ⟨ · , (1, 1)⟩ as illustrated in the
middle and on the right. The sets S1, S2, T1, and T2 are shown in Figure 8. -
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S1

S2

S = convBL (S1 ∪ S2)

T1

T2

T = convBL (T1 ∪ T2)

S1

S2

S′ = S1 +ϑ S2

T1

T2

T ′ = T1 +ϑ T2

Figure 8: The sets {S1, S2} and {T1, T2} are associated to dual Batyrev-Borisov partitions.
We have S◦ = T ′ and S′ = T ◦.

®Tim: [More coming soon...]

References

[Bor93] L. Borisov, Towards the Mirror Symmetry for Calabi-Yau Complete Intersections in Gorenstein
Toric Fano Varieties, (1993), arXiv:alg-geom/9310001.

[Brø83] A. Brøndsted, An introduction to convex polytopes, Graduate Texts in Mathematics, Springer
Science+Business Media, LLC, 1983.

[CLS11] D. A. Cox, J. B. Little and H. K. Schenck, Toric varieties, volume 124 of Graduate Studies in
Mathematics, American Mathematical Society, Providence, RI, 2011.

[CMMM] M.-W. Cheung, T. Magee, T. Mandel and G. Muller, Tropical Theta Functions and Valuations
in Arbitrary Dimension (working title– may change), In progress.

[CMN21] M.-W. Cheung, T. Magee and A. Nájera Chávez, Compactifications of Cluster Varieties and
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